메뉴 건너뛰기




Volumn 24, Issue 7, 2011, Pages 779-784

Evolutionary q-Gaussian radial basis function neural networks for multiclassification

Author keywords

Evolutionary algorithm; Hybrid algorithm; Multiclassification; Q Gaussian radial basis function neural networks

Indexed keywords

CLASSIFICATION METHODS; DATA SETS; DESIGN METHOD; EXPERIMENTAL STUDIES; GAUSSIANS; HIDDEN LAYERS; HYBRID ALGORITHMS; MULTI-CLASSIFICATION; MULTINOMIAL LOGISTIC REGRESSION; MULTIQUADRATICS; PROBABILISTIC CLASSIFIERS; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; SPARSE CLASSIFIERS; UCI REPOSITORY;

EID: 79960893968     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.03.014     Document Type: Article
Times cited : (34)

References (31)
  • 1
    • 84857053260 scopus 로고    scopus 로고
    • UCI machine learning repository. URL.
    • Asuncion, A., & Newman, D. (2007). UCI machine learning repository. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 2
    • 36549083479 scopus 로고    scopus 로고
    • Generalized multiscale radial basis function networks
    • Billings S.A., Wei H., Balikhin M.A. Generalized multiscale radial basis function networks. Neural Networks 2007, 20(10):1081-1094.
    • (2007) Neural Networks , vol.20 , Issue.10 , pp. 1081-1094
    • Billings, S.A.1    Wei, H.2    Balikhin, M.A.3
  • 4
    • 79960890858 scopus 로고    scopus 로고
    • Libsvm: a library for support vector machines.
    • Chang, C., & Lin, C. (2001). Libsvm: a library for support vector machines.
    • (2001)
    • Chang, C.1    Lin, C.2
  • 5
    • 56149124076 scopus 로고    scopus 로고
    • A numerical method for solution of the two-dimensional sine-Gordon equation using the RBF
    • Dehghan M., Shokri A. A numerical method for solution of the two-dimensional sine-Gordon equation using the RBF. Mathematics and Computers in Simulation 2008, 79(3):700-715.
    • (2008) Mathematics and Computers in Simulation , vol.79 , Issue.3 , pp. 700-715
    • Dehghan, M.1    Shokri, A.2
  • 8
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics 1940, 11(1):86-92.
    • (1940) Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 11
    • 51049123604 scopus 로고    scopus 로고
    • Multilogistic regression by means of evolutionary product-unit neural networks
    • Hervás-Martínez C., Martínez-Estudillo F.J., Carbonero-Ruz M. Multilogistic regression by means of evolutionary product-unit neural networks. Neural Networks 2008, 21(7):951-961.
    • (2008) Neural Networks , vol.21 , Issue.7 , pp. 951-961
    • Hervás-Martínez, C.1    Martínez-Estudillo, F.J.2    Carbonero-Ruz, M.3
  • 13
    • 0031277461 scopus 로고    scopus 로고
    • An efficient method lo construct radial basis function neural network classifier
    • Hwang Y., Bang S. An efficient method lo construct radial basis function neural network classifier. Neural Networks 1997, 10(8):1495-1503.
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1495-1503
    • Hwang, Y.1    Bang, S.2
  • 14
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved rprop learning algorithms
    • Igel C., Hüsken M. Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 2003, 50(6):105-123.
    • (2003) Neurocomputing , vol.50 , Issue.6 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 15
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes E.T. Information theory and statistical mechanics. Physical Review 1957, 106(4):620-630.
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620-630
    • Jaynes, E.T.1
  • 16
    • 65049083046 scopus 로고    scopus 로고
    • Application of maximum entropy principle for reliability-based design optimization
    • Kang H.Y., Kwak B.M. Application of maximum entropy principle for reliability-based design optimization. Structural and Multidisciplinary Optimization 2009, 38(4):331-346.
    • (2009) Structural and Multidisciplinary Optimization , vol.38 , Issue.4 , pp. 331-346
    • Kang, H.Y.1    Kwak, B.M.2
  • 21
    • 16544373696 scopus 로고    scopus 로고
    • Efficient training of rbf networks for classification
    • Nabney I.T. Efficient training of rbf networks for classification. International Journal of Neural Systems 2004, 14(3):201-208.
    • (2004) International Journal of Neural Systems , vol.14 , Issue.3 , pp. 201-208
    • Nabney, I.T.1
  • 24
  • 26
    • 0031889404 scopus 로고    scopus 로고
    • Complexity reduction in radial basis function (rbf) networks by using radial b-spline functions
    • Saranli A., Baykal B. Complexity reduction in radial basis function (rbf) networks by using radial b-spline functions. Neurocomputing 1998, 18(1-3):183-194.
    • (1998) Neurocomputing , vol.18 , Issue.1-3 , pp. 183-194
    • Saranli, A.1    Baykal, B.2
  • 27
    • 0032029287 scopus 로고    scopus 로고
    • Cubic approximation neural network for multivariate functions
    • Stein D., Feuer A. Cubic approximation neural network for multivariate functions. Neural Networks 1998, 11(2):235-248.
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 235-248
    • Stein, D.1    Feuer, A.2
  • 28
    • 33646516485 scopus 로고
    • Possible generalization of Boltzmann-Gibbs statistics
    • Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 1988, 52(1-2):479-487.
    • (1988) Journal of Statistical Physics , vol.52 , Issue.1-2 , pp. 479-487
    • Tsallis, C.1
  • 30
    • 73949135312 scopus 로고    scopus 로고
    • Coexistence and local stability of multiple equilibria in neural networks with piecewise linear nondecreasing activation functions
    • Wang L., Lu W., Chen T. Coexistence and local stability of multiple equilibria in neural networks with piecewise linear nondecreasing activation functions. Neural Networks 2010, 23(2):189-200.
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 189-200
    • Wang, L.1    Lu, W.2    Chen, T.3
  • 31
    • 55349089531 scopus 로고    scopus 로고
    • Sparse estimation automatically selects voxels relevant for the decoding of fmri activity patterns
    • Yamashita O., Sato M., Yoshioka T., Tong F., Kamitani Y. Sparse estimation automatically selects voxels relevant for the decoding of fmri activity patterns. NeuroImage 2008, 42(4):1414-1429.
    • (2008) NeuroImage , vol.42 , Issue.4 , pp. 1414-1429
    • Yamashita, O.1    Sato, M.2    Yoshioka, T.3    Tong, F.4    Kamitani, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.