메뉴 건너뛰기




Volumn 74, Issue 16, 2011, Pages 2502-2510

MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks

Author keywords

Extreme learning machine; Generalized Gaussian distribution; Generalized radial basis functions neural networks; Multi classification

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BASIS FUNCTIONS; DATA SETS; EXPERIMENTAL STUDIES; EXTREME LEARNING MACHINE; GAUSSIAN RADIAL BASIS FUNCTIONS; GENERALIZED GAUSSIAN DISTRIBUTIONS; GENERALIZED RADIAL BASIS FUNCTIONS NEURAL NETWORKS; HIDDEN LAYERS; MODEL PARAMETERS; MULTI-CLASS PROBLEMS; MULTI-CLASSIFICATION; NEW MODEL; NEW PARAMETERS; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; TRAINING SETS; UCI REPOSITORY;

EID: 80955178270     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.11.032     Document Type: Article
Times cited : (68)

References (37)
  • 1
    • 21244456913 scopus 로고    scopus 로고
    • Extreme learning machine: RBF network case, in: 8th International Conference on Control, Automation, Robotics and Vision (ICARCV)
    • G.B. Huang, C. Slew, Extreme learning machine: RBF network case, in: 8th International Conference on Control, Automation, Robotics and Vision (ICARCV), vol. 2, 2004, pp. 1029-1036.
    • (2004) , vol.2 , pp. 1029-1036
    • Huang, G.B.1    Slew, C.2
  • 2
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • Park J., Sandberg I.W. Approximation and radial-basis-function networks. Neural Computation 1993, 5(2):305-316.
    • (1993) Neural Computation , vol.5 , Issue.2 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 4
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • Bishop C.M. Improving the generalization properties of radial basis function neural networks. Neural Computation 1991, 3(4):579-581.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 579-581
    • Bishop, C.M.1
  • 5
    • 33748437938 scopus 로고    scopus 로고
    • Evolutionary system for automatically constructing and adapting radial basis function networks
    • Manrique D., Ríos J., Rodríguez-Patón A. Evolutionary system for automatically constructing and adapting radial basis function networks. Neurocomputing 2006, 69(16-18):2268-2283.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2268-2283
    • Manrique, D.1    Ríos, J.2    Rodríguez-Patón, A.3
  • 6
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • Staiano A., Tagliaferri R., Pedrycz W. Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 2006, 69(13-15):1570-1581.
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3
  • 7
    • 77952542781 scopus 로고    scopus 로고
    • First and second order sensitivity analysis of MLP
    • Yeh I.C., Cheng W. First and second order sensitivity analysis of MLP. Neurocomputing 2010, 73(10-12):2225-2233.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2225-2233
    • Yeh, I.C.1    Cheng, W.2
  • 10
    • 71649107625 scopus 로고    scopus 로고
    • Combined projection and kernel basis functions for classification in evolutionary neural networks
    • Gutiérrez P.A., Hervás-Martínez C., Carbonero M., Fernández J.C. Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 2009, 72(13-15):2731-2742.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 2731-2742
    • Gutiérrez, P.A.1    Hervás-Martínez, C.2    Carbonero, M.3    Fernández, J.C.4
  • 11
    • 0242476985 scopus 로고    scopus 로고
    • Input-output clustering for determining centers of radial basis function network, in: Proceedings of the 1997 European Conference on Circuit Theory and Design, Technical University of Budapest, European Circuit Society, Hungary
    • Z. Uykan, C. Guzelis, Input-output clustering for determining centers of radial basis function network, in: Proceedings of the 1997 European Conference on Circuit Theory and Design, vol. 2, Technical University of Budapest, European Circuit Society, Hungary, 1997, pp. 435-439.
    • (1997) , vol.2 , pp. 435-439
    • Uykan, Z.1    Guzelis, C.2
  • 12
    • 84943230540 scopus 로고
    • Combination of radial basis function neural networks with optimized learning vector quantization, in: Proceedings of IEEE International Conference on Neural Networks (ICNN), San Francisco, CA
    • M. Vogt, Combination of radial basis function neural networks with optimized learning vector quantization, in: Proceedings of IEEE International Conference on Neural Networks (ICNN), vol. 3, San Francisco, CA, 1993, pp. 1841-1846.
    • (1993) , vol.3 , pp. 1841-1846
    • Vogt, M.1
  • 13
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian Ying-Yang learning
    • Xu L. RBF nets, mixture experts, and Bayesian Ying-Yang learning. Neurocomputing 1998, 19(1-3):223-257.
    • (1998) Neurocomputing , vol.19 , Issue.1-3 , pp. 223-257
    • Xu, L.1
  • 14
    • 0032584954 scopus 로고    scopus 로고
    • Normalized Gaussian radial basis function networks
    • Bugmann G. Normalized Gaussian radial basis function networks. Neurocomputing 1998, 20(1-3):97-110.
    • (1998) Neurocomputing , vol.20 , Issue.1-3 , pp. 97-110
    • Bugmann, G.1
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q., Siew C. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.2    Siew, C.3
  • 18
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 19
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan Y., Soh Y.C., Huang G. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72(13-15):3391-3395.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.3
  • 20
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 2009, 20(8):1352-1357.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.B.2    Lin, Q.3    Gay, R.4
  • 21
    • 77649238806 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with extreme learning machine
    • Cao J., Lin Z., Huang G.B. Composite function wavelet neural networks with extreme learning machine. Neurocomputing 2010, 73(7-9):1405-1416.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1405-1416
    • Cao, J.1    Lin, Z.2    Huang, G.B.3
  • 22
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results
    • Scarselli F., Chung Tsoi A. Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results. Neural Networks 1998, 11(1):15-37.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Chung Tsoi, A.2
  • 23
    • 79960893968 scopus 로고    scopus 로고
    • Evolutionary q-gaussian radial basis functions neural networks for multi-classification, Neural Networks, in press. URL .
    • F. Fernández-Navarro, C. Hervás-Martínez, P.A. Gutierrez, M. Carboreno, Evolutionary q-gaussian radial basis functions neural networks for multi-classification, Neural Networks, in press. URL http://dx.doi.org/10.1016/j.neunet.2011.03.014.
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutierrez, P.A.3    Carboreno, M.4
  • 24
    • 79951853422 scopus 로고    scopus 로고
    • Evolutionary q-Gaussian radial basis function neural network to determine the microbial grow/thno growth interface of Staphylococcus aureus
    • Fernández-Navarro F., Hervás-Martínez C., Cruz M., Gutierrez P.A., Valero A. Evolutionary q-Gaussian radial basis function neural network to determine the microbial grow/thno growth interface of Staphylococcus aureus. Applied Soft Computing 2011, 11(3):3012-3020.
    • (2011) Applied Soft Computing , vol.11 , Issue.3 , pp. 3012-3020
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Cruz, M.3    Gutierrez, P.A.4    Valero, A.5
  • 26
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • Igel C., Hüsken M. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 2003, 50(6):105-123.
    • (2003) Neurocomputing , vol.50 , Issue.6 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 27
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks, in: IEEE International Conference on Neural Networks-Conference Proceedings
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: IEEE International Conference on Neural Networks-Conference Proceedings, vol. 2, 2004, pp. 985-990.
    • (2004) , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 28
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J., Sandberg I.W. Universal approximation using radial basis function networks. Neural Computation 1991, 3(2):246-257.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 30
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., Darken C. Fast learning in networks of locally-tuned processing units. Neural Computation 1989, 1(2):281-294.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 32
    • 79953050208 scopus 로고    scopus 로고
    • A dynamic over-sampling procedure based on sensitivity for multi-class problems
    • Fernández-Navarro F., Hervás-Martínez C., Gutíerrez P. A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognition 2011, 44(8):1821-1833. URL 〈http://dx.doi.org/10.1016/j.patcog.2011.02.019〉.
    • (2011) Pattern Recognition , vol.44 , Issue.8 , pp. 1821-1833
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutíerrez, P.3
  • 33
    • 80955176907 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 34
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of mrankings
    • Friedman M. A comparison of alternative tests of significance for the problem of mrankings. Annals of Mathematical Statistics 1940, 11(1):86-92.
    • (1940) Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 37
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74(1-3):155-163.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 155-163
    • Huang, G.1    Ding, X.2    Zhou, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.