-
2
-
-
84867691699
-
Mitochondrial control of cellular life, stress, and death
-
Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. 2012. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111:1198-1207.
-
(2012)
Circ. Res.
, vol.111
, pp. 1198-1207
-
-
Galluzzi, L.1
Kepp, O.2
Trojel-Hansen, C.3
Kroemer, G.4
-
3
-
-
0016327931
-
The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells Quantitative isolation of mitochondrial deoxyribonucleic acid
-
Bogenhagen D, Clayton DA. 1974. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 249: 7991-7995.
-
(1974)
J. Biol. Chem.
, vol.249
, pp. 7991-7995
-
-
Bogenhagen, D.1
Clayton, D.A.2
-
4
-
-
0020964045
-
Mitochondrial DNA in mortal and immortal human cells Genome number, integrity, and methylation
-
Shmookler Reis RJ, Goldstein S. 1983. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J. Biol. Chem. 258:9078-9085.
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 9078-9085
-
-
Shmookler Reis, R.J.1
Goldstein, S.2
-
5
-
-
0019423856
-
Sequence and organization of the human mitochondrial genome
-
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457-465.
-
(1981)
Nature
, vol.290
, pp. 457-465
-
-
Anderson, S.1
Bankier, A.T.2
Barrell, B.G.3
de Bruijn, M.H.4
Coulson, A.R.5
Drouin, J.6
Eperon, I.C.7
Nierlich, D.P.8
Roe, B.A.9
Sanger, F.10
Schreier, P.H.11
Smith, A.J.12
Staden, R.13
Young, I.G.14
-
6
-
-
39649120348
-
Inherited mitochondrial diseases of DNA replication
-
Copeland WC. 2008. Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 59:131-146.
-
(2008)
Annu. Rev. Med.
, vol.59
, pp. 131-146
-
-
Copeland, W.C.1
-
7
-
-
83755205842
-
Defects in mitochondrial DNA replication and human disease
-
Copeland WC. 2012. Defects in mitochondrial DNA replication and human disease. Crit. Rev. Biochem. Mol. Biol. 47:64-74.
-
(2012)
Crit. Rev. Biochem. Mol. Biol.
, vol.47
, pp. 64-74
-
-
Copeland, W.C.1
-
8
-
-
33947284408
-
Herpes simplex virus eliminates host mitochondrial DNA
-
Saffran HA, Pare JM, Corcoran JA, Weller SK, Smiley JR. 2007. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 8:188-193.
-
(2007)
EMBO Rep.
, vol.8
, pp. 188-193
-
-
Saffran, H.A.1
Pare, J.M.2
Corcoran, J.A.3
Weller, S.K.4
Smiley, J.R.5
-
9
-
-
42449139730
-
Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication
-
Wiedmer A, Wang P, Zhou J, Rennekamp AJ, Tiranti V, Zeviani M, Lieberman PM. 2008. Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J. Virol. 82:4647-4655.
-
(2008)
J. Virol.
, vol.82
, pp. 4647-4655
-
-
Wiedmer, A.1
Wang, P.2
Zhou, J.3
Rennekamp, A.J.4
Tiranti, V.5
Zeviani, M.6
Lieberman, P.M.7
-
10
-
-
62749121074
-
Herpes simplex virus UL12.5 targets mitochondria through a mitochondrial localization sequence proximal to the N terminus
-
Corcoran JA, Saffran HA, Duguay BA, Smiley JR. 2009. Herpes simplex virus UL12.5 targets mitochondria through a mitochondrial localization sequence proximal to the N terminus. J. Virol. 83:2601-2610.
-
(2009)
J. Virol.
, vol.83
, pp. 2601-2610
-
-
Corcoran, J.A.1
Saffran, H.A.2
Duguay, B.A.3
Smiley, J.R.4
-
11
-
-
0021061053
-
High-resolution characterization of herpes simplex virus type 1 transcripts encoding alkaline exonuclease and a 50,000-dalton protein tentatively identified as a capsid protein
-
Costa RH, Draper KG, Banks L, Powell KL, Cohen G, Eisenberg R, Wagner EK. 1983. High-resolution characterization of herpes simplex virus type 1 transcripts encoding alkaline exonuclease and a 50,000-dalton protein tentatively identified as a capsid protein. J. Virol. 48:591-603.
-
(1983)
J. Virol.
, vol.48
, pp. 591-603
-
-
Costa, R.H.1
Draper, K.G.2
Banks, L.3
Powell, K.L.4
Cohen, G.5
Eisenberg, R.6
Wagner, E.K.7
-
12
-
-
0030042028
-
The product of a 1.9-kb mRNA which overlaps the HSV-1 alkaline nuclease gene (UL12) cannot relieve the growth defects of a null mutant
-
Martinez R, Shao L, Bronstein JC, Weber PC, Weller SK. 1996. The product of a 1.9-kb mRNA which overlaps the HSV-1 alkaline nuclease gene (UL12) cannot relieve the growth defects of a null mutant. Virology 215:152-164.
-
(1996)
Virology
, vol.215
, pp. 152-164
-
-
Martinez, R.1
Shao, L.2
Bronstein, J.C.3
Weber, P.C.4
Weller, S.K.5
-
13
-
-
0018143471
-
The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2 I. Purification and characterization of the enzyme
-
Hoffmann PJ, Cheng YC. 1978. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2. I. Purification and characterization of the enzyme. J. Biol. Chem. 253:3557-3562.
-
(1978)
J. Biol. Chem.
, vol.253
, pp. 3557-3562
-
-
Hoffmann, P.J.1
Cheng, Y.C.2
-
14
-
-
0018579310
-
DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2 II. Characterization of an associated endonuclease activity
-
Hoffmann PJ, Cheng YC. 1979. DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2. II. Characterization of an associated endonuclease activity. J. Virol. 32:449-457.
-
(1979)
J. Virol.
, vol.32
, pp. 449-457
-
-
Hoffmann, P.J.1
Cheng, Y.C.2
-
15
-
-
0020502451
-
Herpes simplex virus non-structural proteins. IV. Purification of the virusinduced deoxyribonuclease characterization of the enzyme using monoclonal antibodies
-
Banks L, Purifoy DJ, Hurst PF, Killington RA, Powell KL. 1983. Herpes simplex virus non-structural proteins. IV. Purification of the virusinduced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. J. Gen. Virol. 64(Pt 10):2249-2260.
-
(1983)
J. Gen. Virol
, vol.64
, Issue.PART 10
, pp. 2249-2260
-
-
Banks, L.1
Purifoy, D.J.2
Hurst, P.F.3
Killington, R.A.4
Powell, K.L.5
-
16
-
-
0030025857
-
Purification and characterization of herpes simplex virus type 1 alkaline exonuclease expressed in Escherichia coli
-
Bronstein JC, Weber PC. 1996. Purification and characterization of herpes simplex virus type 1 alkaline exonuclease expressed in Escherichia coli. J. Virol. 70:2008-2013.
-
(1996)
J. Virol.
, vol.70
, pp. 2008-2013
-
-
Bronstein, J.C.1
Weber, P.C.2
-
17
-
-
4143103158
-
The UL12.5 gene product of herpes simplex virus type 1 exhibits nuclease and strand exchange activities but does not localize to the nucleus
-
Reuven NB, Antoku S, Weller SK. 2004. The UL12.5 gene product of herpes simplex virus type 1 exhibits nuclease and strand exchange activities but does not localize to the nucleus. J. Virol. 78:4599-4608.
-
(2004)
J. Virol.
, vol.78
, pp. 4599-4608
-
-
Reuven, N.B.1
Antoku, S.2
Weller, S.K.3
-
18
-
-
0029870883
-
Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates
-
Martinez R, Sarisky RT, Weber PC, Weller SK. 1996. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70:2075-2085.
-
(1996)
J. Virol.
, vol.70
, pp. 2075-2085
-
-
Martinez, R.1
Sarisky, R.T.2
Weber, P.C.3
Weller, S.K.4
-
19
-
-
0027227461
-
Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus
-
Shao L, Rapp LM, Weller SK. 1993. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196:146-162.
-
(1993)
Virology
, vol.196
, pp. 146-162
-
-
Shao, L.1
Rapp, L.M.2
Weller, S.K.3
-
20
-
-
0025667077
-
The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation characterization of a lacZ insertion mutant
-
Weller SK, Seghatoleslami MR, Shao L, Rowse D, Carmichael EP. 1990. The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J. Gen. Virol. 71(Pt 12):2941-2952.
-
(1990)
J. Gen. Virol
, vol.71
, Issue.PART 12
, pp. 2941-2952
-
-
Weller, S.K.1
Seghatoleslami, M.R.2
Shao, L.3
Rowse, D.4
Carmichael, E.P.5
-
21
-
-
65349192186
-
The Epstein-Barr virus alkaline exonuclease BGLF5 serves pleiotropic functions in virus replication
-
Feederle R, Bannert H, Lips H, Muller-Lantzsch N, Delecluse HJ. 2009. The Epstein-Barr virus alkaline exonuclease BGLF5 serves pleiotropic functions in virus replication. J. Virol. 83:4952-4962.
-
(2009)
J. Virol.
, vol.83
, pp. 4952-4962
-
-
Feederle, R.1
Bannert, H.2
Lips, H.3
Muller-Lantzsch, N.4
Delecluse, H.J.5
-
22
-
-
0030896672
-
The product of the UL12.5 gene of herpes simplex virus type 1 is a capsid-associated nuclease
-
Bronstein JC, Weller SK, Weber PC. 1997. The product of the UL12.5 gene of herpes simplex virus type 1 is a capsid-associated nuclease. J. Virol. 71:3039-3047.
-
(1997)
J. Virol.
, vol.71
, pp. 3039-3047
-
-
Bronstein, J.C.1
Weller, S.K.2
Weber, P.C.3
-
23
-
-
0032579808
-
Structure-function analysis of the herpes simplex virus type 1 UL12 gene: correlation of deoxyribonuclease activity in vitro with replication function
-
Henderson JO, Ball-Goodrich LJ, Parris DS. 1998. Structure-function analysis of the herpes simplex virus type 1 UL12 gene: correlation of deoxyribonuclease activity in vitro with replication function. Virology 243: 247-259.
-
(1998)
Virology
, vol.243
, pp. 247-259
-
-
Henderson, J.O.1
Ball-Goodrich, L.J.2
Parris, D.S.3
-
24
-
-
4444281106
-
Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes
-
Zeghouf M, Li J, Butland G, Borkowska A, Canadien V, Richards D, Beattie B, Emili A, Greenblatt JF. 2004. Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J. Proteome Res. 3:463-468.
-
(2004)
J. Proteome Res.
, vol.3
, pp. 463-468
-
-
Zeghouf, M.1
Li, J.2
Butland, G.3
Borkowska, A.4
Canadien, V.5
Richards, D.6
Beattie, B.7
Emili, A.8
Greenblatt, J.F.9
-
25
-
-
0032957639
-
Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis
-
Wang W, Malcolm BA. 1999. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis. Biotechniques 26:680-682.
-
(1999)
Biotechniques
, vol.26
, pp. 680-682
-
-
Wang, W.1
Malcolm, B.A.2
-
26
-
-
1842452746
-
Structural and functional characterization of mitochondrial EndoG, a sugar non-specific nuclease which plays an important role during apoptosis
-
Schäfer P, Scholz SR, Gimadutdinow O, Cymerman IA, Bujnicki JM, Ruiz-Carrillo A, Pingoud A, Meiss G. 2004. Structural and functional characterization of mitochondrial EndoG, a sugar non-specific nuclease which plays an important role during apoptosis. J. Mol. Biol. 338:217-228.
-
(2004)
J. Mol. Biol.
, vol.338
, pp. 217-228
-
-
Schäfer, P.1
Scholz, S.R.2
Gimadutdinow, O.3
Cymerman, I.A.4
Bujnicki, J.M.5
Ruiz-Carrillo, A.6
Pingoud, A.7
Meiss, G.8
-
27
-
-
40249097634
-
EXOG, a novel paralog of endonuclease G in higher eukaryotes
-
Cymerman IA, Chung I, Beckmann BM, Bujnicki JM, Meiss G. 2008. EXOG, a novel paralog of endonuclease G in higher eukaryotes. Nucleic Acids Res. 36:1369-1379.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 1369-1379
-
-
Cymerman, I.A.1
Chung, I.2
Beckmann, B.M.3
Bujnicki, J.M.4
Meiss, G.5
-
28
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T. 2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 105:14447-14452.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
Deng, C.X.7
Finkel, T.8
-
29
-
-
0032503242
-
The exonuclease activity of HSV-1 UL12 is required for in vivo function
-
Goldstein JN, Weller SK. 1998. The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology 244:442-457.
-
(1998)
Virology
, vol.244
, pp. 442-457
-
-
Goldstein, J.N.1
Weller, S.K.2
-
30
-
-
68149163563
-
A bridge crosses the active-site canyon of the Epstein- Barr virus nuclease with DNase and RNase activities
-
Buisson M, Geoui T, Flot D, Tarbouriech N, Ressing ME, Wiertz EJ, Burmeister WP. 2009. A bridge crosses the active-site canyon of the Epstein- Barr virus nuclease with DNase and RNase activities. J. Mol. Biol. 391:717-728.
-
(2009)
J. Mol. Biol.
, vol.391
, pp. 717-728
-
-
Buisson, M.1
Geoui, T.2
Flot, D.3
Tarbouriech, N.4
Ressing, M.E.5
Wiertz, E.J.6
Burmeister, W.P.7
-
31
-
-
70350435285
-
Crystal structure of the shutoffand exonuclease protein from the oncogenic Kaposi's sarcoma-associated herpesvirus
-
Dahlroth SL, Gurmu D, Schmitzberger F, Engman H, Haas J, Erlandsen H, Nordlund P. 2009. Crystal structure of the shutoffand exonuclease protein from the oncogenic Kaposi's sarcoma-associated herpesvirus. FEBS J. 276:6636-6645.
-
(2009)
FEBS J.
, vol.276
, pp. 6636-6645
-
-
Dahlroth, S.L.1
Gurmu, D.2
Schmitzberger, F.3
Engman, H.4
Haas, J.5
Erlandsen, H.6
Nordlund, P.7
-
32
-
-
83755195695
-
Structural modelling and mutagenesis of human cytomegalovirus alkaline nuclease UL98
-
Kuchta AL, Parikh H, Zhu Y, Kellogg GE, Parris DS, McVoy MA. 2012. Structural modelling and mutagenesis of human cytomegalovirus alkaline nuclease UL98. J. Gen. Virol. 93:130-138.
-
(2012)
J. Gen. Virol.
, vol.93
, pp. 130-138
-
-
Kuchta, A.L.1
Parikh, H.2
Zhu, Y.3
Kellogg, G.E.4
Parris, D.S.5
McVoy, M.A.6
-
33
-
-
84866170193
-
The "bridge" in the Epstein- Barr virus alkaline exonuclease protein BGLF5 contributes to shutoffactivity during productive infection
-
Horst D, Burmeister WP, Boer IG, van Leeuwen D, Buisson M, Gorbalenya AE, Wiertz EJ, Ressing ME. 2012. The "bridge" in the Epstein- Barr virus alkaline exonuclease protein BGLF5 contributes to shutoffactivity during productive infection. J. Virol. 86:9175-9187.
-
(2012)
J. Virol.
, vol.86
, pp. 9175-9187
-
-
Horst, D.1
Burmeister, W.P.2
Boer, I.G.3
van Leeuwen, D.4
Buisson, M.5
Gorbalenya, A.E.6
Wiertz, E.J.7
Ressing, M.E.8
-
34
-
-
1642271607
-
Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover
-
Glaunsinger B, Ganem D. 2004. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol. Cell 13:713-723.
-
(2004)
Mol. Cell
, vol.13
, pp. 713-723
-
-
Glaunsinger, B.1
Ganem, D.2
-
35
-
-
0022633660
-
Characterization of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonucleases and overlapping proteins
-
Draper KG, Devi-Rao G, Costa RH, Blair ED, Thompson RL, Wagner EK. 1986. Characterization of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonucleases and overlapping proteins. J. Virol. 57:1023-1036.
-
(1986)
J. Virol.
, vol.57
, pp. 1023-1036
-
-
Draper, K.G.1
Devi-Rao, G.2
Costa, R.H.3
Blair, E.D.4
Thompson, R.L.5
Wagner, E.K.6
-
36
-
-
78649441078
-
Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex
-
Balasubramanian N, Bai P, Buchek G, Korza G, Weller SK. 2010. Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J. Virol. 84:12504-12514.
-
(2010)
J. Virol.
, vol.84
, pp. 12504-12514
-
-
Balasubramanian, N.1
Bai, P.2
Buchek, G.3
Korza, G.4
Weller, S.K.5
-
37
-
-
80055094397
-
Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host shutofffactor and the mammalian exonuclease Xrn1
-
doi:10.1371/journal.ppat.1002339
-
Covarrubias S, Gaglia MM, Kumar GR, Wong W, Jackson AO, Glaunsinger BA. 2011. Coordinated destruction of cellular messages in translation complexes by the gammaherpesvirus host shutofffactor and the mammalian exonuclease Xrn1. PLoS Pathog. 7:e1002339. doi:10.1371/journal.ppat.1002339.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Covarrubias, S.1
Gaglia, M.M.2
Kumar, G.R.3
Wong, W.4
Jackson, A.O.5
Glaunsinger, B.A.6
-
38
-
-
0023654014
-
Purification and characterization of the potent endonuclease in extracts of bovine heart mitochondria
-
Cummings OW, King TC, Holden JA, Low RL. 1987. Purification and characterization of the potent endonuclease in extracts of bovine heart mitochondria. J. Biol. Chem. 262:2005-2015.
-
(1987)
J. Biol. Chem.
, vol.262
, pp. 2005-2015
-
-
Cummings, O.W.1
King, T.C.2
Holden, J.A.3
Low, R.L.4
-
39
-
-
0028816881
-
Endonuclease G from mammalian nuclei is identical to the major endonuclease of mitochondria
-
Gerschenson M, Houmiel KL, Low RL. 1995. Endonuclease G from mammalian nuclei is identical to the major endonuclease of mitochondria. Nucleic Acids Res. 23:88-97.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 88-97
-
-
Gerschenson, M.1
Houmiel, K.L.2
Low, R.L.3
-
40
-
-
33645928711
-
Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells
-
Chattopadhyay R, Wiederhold L, Szczesny B, Boldogh I, Hazra TK, Izumi T, Mitra S. 2006. Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells. Nucleic Acids Res. 34:2067-2076.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 2067-2076
-
-
Chattopadhyay, R.1
Wiederhold, L.2
Szczesny, B.3
Boldogh, I.4
Hazra, T.K.5
Izumi, T.6
Mitra, S.7
-
41
-
-
0035820072
-
Mitochondrial localization of APE/Ref-1 in thyroid cells
-
Tell G, Crivellato E, Pines A, Paron I, Pucillo C, Manzini G, Bandiera A, Kelley MR, Di Loreto C, Damante G. 2001. Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat. Res. 485:143-152.
-
(2001)
Mutat. Res.
, vol.485
, pp. 143-152
-
-
Tell, G.1
Crivellato, E.2
Pines, A.3
Paron, I.4
Pucillo, C.5
Manzini, G.6
Bandiera, A.7
Kelley, M.R.8
Di Loreto, C.9
Damante, G.10
-
42
-
-
0035369734
-
Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen
-
Tsuchimoto D, Sakai Y, Sakumi K, Nishioka K, Sasaki M, Fujiwara T, Nakabeppu Y. 2001. Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res. 29:2349-2360.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 2349-2360
-
-
Tsuchimoto, D.1
Sakai, Y.2
Sakumi, K.3
Nishioka, K.4
Sasaki, M.5
Fujiwara, T.6
Nakabeppu, Y.7
-
43
-
-
49449102611
-
Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria
-
Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L, Bogenhagen DF, Bohr VA, Wilson DM, III, Shen B, Demple B. 2008. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol. Cell. Biol. 28:4975-4987.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4975-4987
-
-
Liu, P.1
Qian, L.2
Sung, J.S.3
de Souza-Pinto, N.C.4
Zheng, L.5
Bogenhagen, D.F.6
Bohr, V.A.7
Wilson III, D.M.8
Shen, B.9
Demple, B.10
-
44
-
-
55049124777
-
Long patch base excision repair in mammalian mitochondrial genomes
-
Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S. 2008. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 283:26349-26356.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 26349-26356
-
-
Szczesny, B.1
Tann, A.W.2
Longley, M.J.3
Copeland, W.C.4
Mitra, S.5
-
45
-
-
55049112210
-
Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates
-
Zheng L, Zhou M, Guo Z, Lu H, Qian L, Dai H, Qiu J, Yakubovskaya E, Bogenhagen DF, Demple B, Shen B. 2008. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol. Cell 32:325-336.
-
(2008)
Mol. Cell
, vol.32
, pp. 325-336
-
-
Zheng, L.1
Zhou, M.2
Guo, Z.3
Lu, H.4
Qian, L.5
Dai, H.6
Qiu, J.7
Yakubovskaya, E.8
Bogenhagen, D.F.9
Demple, B.10
Shen, B.11
-
46
-
-
84876368330
-
Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels
-
Szczesny RJ, Hejnowicz MS, Steczkiewicz K, Muszewska A, Borowski LS, Ginalski K, Dziembowski A. 2013. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Res. 41:3144-3161.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 3144-3161
-
-
Szczesny, R.J.1
Hejnowicz, M.S.2
Steczkiewicz, K.3
Muszewska, A.4
Borowski, L.S.5
Ginalski, K.6
Dziembowski, A.7
-
47
-
-
0024278708
-
Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae
-
Dake E, Hofmann TJ, McIntire S, Hudson A, Zassenhaus HP. 1988. Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 263:7691-7702.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 7691-7702
-
-
Dake, E.1
Hofmann, T.J.2
McIntire, S.3
Hudson, A.4
Zassenhaus, H.P.5
-
48
-
-
0024296638
-
Construction of a yeast mutant lacking the mitochondrial nuclease
-
Zassenhaus HP, Hofmann TJ, Uthayashanker R, Vincent RD, Zona M. Construction of a yeast mutant lacking the mitochondrial nuclease. Nucleic Acids Res. 16:3283-3296.
-
Nucleic Acids Res
, vol.16
-
-
Zassenhaus, H.P.1
Hofmann, T.J.2
Uthayashanker, R.3
Vincent, R.D.4
Zona, M.5
-
49
-
-
0021100135
-
Purification and properties of single strand DNA-binding endo-exonuclease of Neurospora crassa
-
Chow TY, Fraser MJ. 1983. Purification and properties of single strand DNA-binding endo-exonuclease of Neurospora crassa. J. Biol. Chem. 258: 12010-12018.
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 12010-12018
-
-
Chow, T.Y.1
Fraser, M.J.2
-
50
-
-
0023283902
-
Endonuclease G: a (dG)n X (dC)nspecific DNase from higher eukaryotes
-
Ruiz-Carrillo A, Renaud J. 1987. Endonuclease G: a (dG)n X (dC)nspecific DNase from higher eukaryotes. EMBO J. 6:401-407.
-
(1987)
EMBO J.
, vol.6
, pp. 401-407
-
-
Ruiz-Carrillo, A.1
Renaud, J.2
-
51
-
-
0035930523
-
Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I
-
Widlak P, Li LY, Wang X, Garrard WT. 2001. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J. Biol. Chem. 276: 48404-48409.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 48404-48409
-
-
Widlak, P.1
Li, L.Y.2
Wang, X.3
Garrard, W.T.4
-
52
-
-
80053897262
-
Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function
-
McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafin A, Ware J, Bottolo L, Muckett P, Canas X, Zhang J, Rowe GC, Buchan R, Lu H, Braithwaite A, Mancini M, Hauton D, Marti R, Garcia-Arumi E, Hubner N, Jacob H, Serikawa T, Zidek V, Papousek F, Kolar F, Cardona M, Ruiz-Meana M, Garcia-Dorado D, Comella JX, Felkin LE, Barton PJ, Arany Z, Pravenec M, Petretto E, Sanchis D, Cook SA. 2011. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478:114-118.
-
(2011)
Nature
, vol.478
, pp. 114-118
-
-
McDermott-Roe, C.1
Ye, J.2
Ahmed, R.3
Sun, X.M.4
Serafin, A.5
Ware, J.6
Bottolo, L.7
Muckett, P.8
Canas, X.9
Zhang, J.10
Rowe, G.C.11
Buchan, R.12
Lu, H.13
Braithwaite, A.14
Mancini, M.15
Hauton, D.16
Marti, R.17
Garcia-Arumi, E.18
Hubner, N.19
Jacob, H.20
Serikawa, T.21
Zidek, V.22
Papousek, F.23
Kolar, F.24
Cardona, M.25
Ruiz-Meana, M.26
Garcia-Dorado, D.27
Comella, J.X.28
Felkin, L.E.29
Barton, P.J.30
Arany, Z.31
Pravenec, M.32
Petretto, E.33
Sanchis, D.34
Cook, S.A.35
more..
-
53
-
-
33745171416
-
Endonuclease G: a role for the enzyme in recombination and cellular proliferation
-
Huang KJ, Ku CC, Lehman IR. 2006. Endonuclease G: a role for the enzyme in recombination and cellular proliferation. Proc. Natl. Acad. Sci. U. S. A. 103:8995-9000.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 8995-9000
-
-
Huang, K.J.1
Ku, C.C.2
Lehman, I.R.3
-
54
-
-
0037036351
-
Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus
-
Huang KJ, Zemelman BV, Lehman IR. 2002. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus. J. Biol. Chem. 277:21071-21079.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 21071-21079
-
-
Huang, K.J.1
Zemelman, B.V.2
Lehman, I.R.3
-
55
-
-
0035811511
-
Mitochondrial endonuclease G is important for apoptosis in Celegans
-
Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D. 2001. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90-94.
-
(2001)
Nature
, vol.412
, pp. 90-94
-
-
Parrish, J.1
Li, L.2
Klotz, K.3
Ledwich, D.4
Wang, X.5
Xue, D.6
-
56
-
-
0024978057
-
Recognition of (dG)n.(dC)n sequences by endonuclease G. Characterization of the calf thymus nuclease.
-
Cote J, Renaud J, Ruiz-Carrillo A. 1989. Recognition of (dG)n.(dC)n sequences by endonuclease G. Characterization of the calf thymus nuclease. J. Biol. Chem. 264:3301-3310.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 3301-3310
-
-
Cote, J.1
Renaud, J.2
Ruiz-Carrillo, A.3
-
57
-
-
0035811496
-
Endonuclease G is an apoptotic DNase when released from mitochondria
-
Li LY, Luo X, Wang X. 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99.
-
(2001)
Nature
, vol.412
, pp. 95-99
-
-
Li, L.Y.1
Luo, X.2
Wang, X.3
-
58
-
-
0037135972
-
The human silentinformation regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
-
Schwer B, North BJ, Frye RA, Ott M, Verdin E. 2002. The human silentinformation regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158: 647-657.
-
(2002)
J. Cell Biol.
, vol.158
, pp. 647-657
-
-
Schwer, B.1
North, B.J.2
Frye, R.A.3
Ott, M.4
Verdin, E.5
-
59
-
-
0027284549
-
Primers for mitochondrial DNA replication generated by endonuclease G
-
Cote J, Ruiz-Carrillo A. 1993. Primers for mitochondrial DNA replication generated by endonuclease G. Science 261:765-769.
-
(1993)
Science
, vol.261
, pp. 765-769
-
-
Cote, J.1
Ruiz-Carrillo, A.2
-
60
-
-
0028956422
-
Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis
-
Tiranti V, Rossi E, Ruiz-Carrillo A, Rossi G, Rocchi M, DiDonato S, Zuffardi O, Zeviani M. 1995. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics 25:559-564.
-
(1995)
Genomics
, vol.25
, pp. 559-564
-
-
Tiranti, V.1
Rossi, E.2
Ruiz-Carrillo, A.3
Rossi, G.4
Rocchi, M.5
DiDonato, S.6
Zuffardi, O.7
Zeviani, M.8
-
61
-
-
84858200622
-
Barriers to male transmission of mitochondrial DNA in sperm development
-
DeLuca SZ, O'Farrell PH. 2012. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22:660-668.
-
(2012)
Dev. Cell
, vol.22
, pp. 660-668
-
-
DeLuca, S.Z.1
O'Farrell, P.H.2
-
62
-
-
84872414440
-
The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex
-
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. 2012. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat. Res. 740:21-33.
-
(2012)
Mutat. Res.
, vol.740
, pp. 21-33
-
-
Dzierzbicki, P.1
Kaniak-Golik, A.2
Malc, E.3
Mieczkowski, P.4
Ciesla, Z.5
-
63
-
-
80052698492
-
Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5=-EXO/endonuclease) in their repair
-
Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B, Mitra S, Szczesny B. 2011. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5=-EXO/endonuclease) in their repair. J. Biol. Chem. 286:31975-31983.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31975-31983
-
-
Tann A.W Boldogh, I.1
Meiss, G.2
Qian, W.3
Van Houten, B.4
Mitra, S.5
Szczesny, B.6
-
64
-
-
84866729278
-
Minimizing the damage: repair pathways keep mitochondrial DNA intact
-
Kazak L, Reyes A, Holt IJ. 2012. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat. Rev. Mol. Cell Biol. 13:659-671.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 659-671
-
-
Kazak, L.1
Reyes, A.2
Holt, I.J.3
-
65
-
-
0023948725
-
Effect of herpes simplex virus type 2 infection on mitochondrial gene expression
-
Latchman DS. 1988. Effect of herpes simplex virus type 2 infection on mitochondrial gene expression. J. Gen. Virol. 69(Pt 6):1405-1410.
-
(1988)
J. Gen. Virol
, vol.69
, Issue.PART 6
, pp. 1405-1410
-
-
Latchman, D.S.1
-
66
-
-
33847615627
-
Host shutoffduring productive Epstein-Barr virus infection is mediated by BGLF5 may contribute to immune evasion
-
Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, Middeldorp J, Wiertz EJ, Ressing ME. 2007. Host shutoffduring productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc. Natl. Acad. Sci. U. S. A. 104:3366-3371.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 3366-3371
-
-
Rowe, M.1
Glaunsinger, B.2
van Leeuwen, D.3
Zuo, J.4
Sweetman, D.5
Ganem, D.6
Middeldorp, J.7
Wiertz, E.J.8
Ressing, M.E.9
|