메뉴 건너뛰기




Volumn 27, Issue 14, 2013, Pages 4773-4794

Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran

Author keywords

Gamma test; Genetic algorithm; Groundwater; Iran; NN ARX model; Ward clustering

Indexed keywords

ARID AND SEMI-ARID AREAS; GAMMA TEST; GROUNDWATER EXTRACTION; GROUNDWATER LEVEL FLUCTUATION; IRAN; LEVENBERG-MARQUARDT ALGORITHM; PERFORMANCE INDICATORS; WARD CLUSTERING;

EID: 84886594570     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-013-0432-y     Document Type: Article
Times cited : (40)

References (50)
  • 2
    • 34548276911 scopus 로고    scopus 로고
    • Using fuzzy logic for modeling aquifer architecture
    • Allen DM, Schuurman N, Zhang Q (2007) Using fuzzy logic for modeling aquifer architecture. J Geogr Syst 9: 289-310.
    • (2007) J Geogr Syst , vol.9 , pp. 289-310
    • Allen, D.M.1    Schuurman, N.2    Zhang, Q.3
  • 4
    • 17644390628 scopus 로고    scopus 로고
    • Experimental performance of spatial interpolators for groundwater salinity
    • Alsaaran N A (2005) Experimental performance of spatial interpolators for groundwater salinity. Arab J Sci Eng 30(1A): 3-15.
    • (2005) Arab J Sci Eng , vol.30 , Issue.1 A , pp. 3-15
    • Alsaaran, N.A.1
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju)
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju) (2000a) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2): 124-137.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju)
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju) (2000b) Artificial neural networks in hydrology. II: preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 7
    • 0031715454 scopus 로고    scopus 로고
    • Modeling water table fluctuations by means of a stochastic differential equation
    • Bierkens MFP (1998) Modeling water table fluctuations by means of a stochastic differential equation. Water Resour Res 34(10): 2485-2499.
    • (1998) Water Resour Res , vol.34 , Issue.10 , pp. 2485-2499
    • Bierkens, M.F.P.1
  • 10
    • 0344984214 scopus 로고    scopus 로고
    • Artificial neural network approach for predicting transient water levels in a multi layered groundwater system under variable state, pumping, and climate conditions
    • Coppola JM, Szidarovszky F, Poulton M, Charles E (2003) Artificial neural network approach for predicting transient water levels in a multi layered groundwater system under variable state, pumping, and climate conditions. J Hydrol Eng 8(6): 348-360.
    • (2003) J Hydrol Eng , vol.8 , Issue.6 , pp. 348-360
    • Coppola, J.M.1    Szidarovszky, F.2    Poulton, M.3    Charles, E.4
  • 11
    • 84859835297 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P, Anctil F, Aravena R, Bernard B (2001) Artificial neural network modeling of water table depth fluctuations. J Hydrol 307(4): 92-111.
    • (2001) J Hydrol , vol.307 , Issue.4 , pp. 92-111
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bernard, B.4
  • 12
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309(4): 229-240.
    • (2005) J Hydrol , vol.309 , Issue.4 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 14
    • 57249098752 scopus 로고    scopus 로고
    • A proof of the gamma test
    • Evans D, Jones AJ (2002) A proof of the gamma test. Proc Roy Soc Ser A 458(2027): 2759-2799.
    • (2002) Proc Roy Soc Ser A , vol.458 , Issue.2027 , pp. 2759-2799
    • Evans, D.1    Jones, A.J.2
  • 15
    • 0742324118 scopus 로고    scopus 로고
    • Modeling greenhouse temperature using system identification by means of neural networks
    • Frausto HU, Pieters JG (2004) Modeling greenhouse temperature using system identification by means of neural networks. Neurocomputing 56: 423-428.
    • (2004) Neurocomputing , vol.56 , pp. 423-428
    • Frausto, H.U.1    Pieters, J.G.2
  • 16
    • 0000809163 scopus 로고    scopus 로고
    • Nonlinear modelling and prediction with feedforward and recurrent networks
    • Gencay R, Liu T (1997) Nonlinear modelling and prediction with feedforward and recurrent networks. Phys D 108(1-2): 119-134.
    • (1997) Phys D , vol.108 , Issue.1-2 , pp. 119-134
    • Gencay, R.1    Liu, T.2
  • 17
    • 0020434889 scopus 로고
    • Estimating potential evapotranspiration
    • Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Div 108(3): 225-230.
    • (1982) J Irrig Drain Div , vol.108 , Issue.3 , pp. 225-230
    • Hargreaves, G.H.1    Samani, Z.A.2
  • 18
    • 84950630088 scopus 로고
    • Identification of dynamic regression (distributed lag) models connecting two time series
    • Haugh LD, Box GEP (1977) Identification of dynamic regression (distributed lag) models connecting two time series. J Am Stat Assoc 72(397): 121-130.
    • (1977) J Am Stat Assoc , vol.72 , Issue.397 , pp. 121-130
    • Haugh, L.D.1    Box, G.E.P.2
  • 23
    • 84859847944 scopus 로고    scopus 로고
    • Application of "panel-data" modeling to predict groundwater levels in the Neishaboor Plain, Iran
    • doi:10.1007/s10040-011-0814-2
    • Izady A, Davari K, Ghahraman B, Alizadeh A, Sadeghi M, Moghaddamnia A (2012) Application of "panel-data" modeling to predict groundwater levels in the Neishaboor Plain, Iran. Hydrogeol J 20(3): 435-447. doi: 10. 1007/s10040-011-0814-2.
    • (2012) Hydrogeol J , vol.20 , Issue.3 , pp. 435-447
    • Izady, A.1    Davari, K.2    Ghahraman, B.3    Alizadeh, A.4    Sadeghi, M.5    Moghaddamnia, A.6
  • 24
    • 0031260124 scopus 로고    scopus 로고
    • Estimating fluctuation quantities from time series of water table depths using models with a stochastic component
    • Knotters M, van Walsum PEV (1997) Estimating fluctuation quantities from time series of water table depths using models with a stochastic component. J Hydrol 197: 25-46.
    • (1997) J Hydrol , vol.197 , pp. 25-46
    • Knotters, M.1    van Walsum, P.E.V.2
  • 25
    • 0003432695 scopus 로고    scopus 로고
    • PhD thesis. Department of Computing, Imperial College of Science, Technology and Medicine, University of London
    • Končar N (1997) Optimisation methodologies for direct inverse neurocontrol. PhD thesis. Department of Computing, Imperial College of Science, Technology and Medicine, University of London.
    • (1997) Optimisation methodologies for direct inverse neurocontrol
    • Končar, N.1
  • 26
    • 0031164360 scopus 로고    scopus 로고
    • ARMA neuron networks for modeling nonlinear dynamical systems
    • Krishnapura VG, Jutan A (1997) ARMA neuron networks for modeling nonlinear dynamical systems. Can J Chem Eng 75(3): 574-582.
    • (1997) Can J Chem Eng , vol.75 , Issue.3 , pp. 574-582
    • Krishnapura, V.G.1    Jutan, A.2
  • 27
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • Lin T, Horne BG, Tino P, Giles CL (1996) Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans Neural Netw 7(6): 1329-1338.
    • (1996) IEEE Trans Neural Netw , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 30
    • 0031222587 scopus 로고    scopus 로고
    • Determining inputs for neural network models of multivariate time series
    • Maier HR, Dandy GC (1997) Determining inputs for neural network models of multivariate time series. Microcomput Civ Eng 12(5): 353-368.
    • (1997) Microcomput Civ Eng , vol.12 , Issue.5 , pp. 353-368
    • Maier, H.R.1    Dandy, G.C.2
  • 31
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15: 101-124.
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 34
    • 0031968002 scopus 로고    scopus 로고
    • Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
    • Morshed J, Kaluarachchi JJ (1998) Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resour Res 34(5): 1101-1113.
    • (1998) Water Resour Res , vol.34 , Issue.5 , pp. 1101-1113
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 35
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak P, Satyaji Rao YR, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 2(1): 77-99.
    • (2006) Water Resour Manag , vol.2 , Issue.1 , pp. 77-99
    • Nayak, P.1    Satyaji Rao, Y.R.2    Sudheer, K.P.3
  • 37
    • 0003396258 scopus 로고    scopus 로고
    • Ver. 2, Tech. report 00-E-891, Department of Automation, Technical University of Denmark
    • Norgaard M (2000) Neural network based system identification toolbox. Ver. 2, Tech. report 00-E-891, Department of Automation, Technical University of Denmark, (http://www. iau. dtu. dk/nnbook/software. html).
    • (2000) Neural network based system identification toolbox
    • Norgaard, M.1
  • 39
    • 0028401274 scopus 로고
    • An analysis of the gamma memory in dynamic neural networks
    • Principe JC, Kuo JM, Celebi S (1994) An analysis of the gamma memory in dynamic neural networks. IEEE Trans Neural Netw 5(2): 331-337.
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.2 , pp. 331-337
    • Principe, J.C.1    Kuo, J.M.2    Celebi, S.3
  • 40
    • 0029506401 scopus 로고
    • Application of neural network in groundwater remediation under conditions of uncertainty
    • Z. W. Kundzewicz (Ed.), New York: Cambridge Univ. Press
    • Ranjithan RS, Eheart JW, Garrett JH (1995) Application of neural network in groundwater remediation under conditions of uncertainty. In: Kundzewicz ZW (ed) New uncertainty concepts in hydrology and water resources. Cambridge Univ. Press, New York, pp 133-140.
    • (1995) New Uncertainty Concepts in Hydrology and Water Resources , pp. 133-140
    • Ranjithan, R.S.1    Eheart, J.W.2    Garrett, J.H.3
  • 41
    • 0031272644 scopus 로고    scopus 로고
    • Neural networks in financial engineering: a study in methodology
    • Refenes A, Burgess AN, Bents Y (1997) Neural networks in financial engineering: a study in methodology. IEEE Trans Neural Netw 8(6): 1223-1267.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.6 , pp. 1223-1267
    • Refenes, A.1    Burgess, A.N.2    Bents, Y.3
  • 42
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: neural kriging
    • Rizzo DM, Dougherty DE (1994) Characterization of aquifer properties using artificial neural networks: neural kriging. Water Resour Res 30(2): 483-497.
    • (1994) Water Resour Res , vol.30 , Issue.2 , pp. 483-497
    • Rizzo, D.M.1    Dougherty, D.E.2
  • 46
    • 0022077253 scopus 로고
    • A comparative analysis of techniques for spatial interpolation of precipitation
    • Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. J Am Water Resour Assoc 21(3): 365-380.
    • (1985) J Am Water Resour Assoc , vol.21 , Issue.3 , pp. 365-380
    • Tabios, G.Q.1    Salas, J.D.2
  • 47
    • 0027836314 scopus 로고
    • Comparison of univariate and transfer function models of groundwater fluctuations
    • Tankersley CD, Graham WD, Hatfield K (1993) Comparison of univariate and transfer function models of groundwater fluctuations. Water Resour Res 29(10): 2517-3533.
    • (1993) Water Resour Res , vol.29 , Issue.10 , pp. 2517-3533
    • Tankersley, C.D.1    Graham, W.D.2    Hatfield, K.3
  • 48
    • 0030615817 scopus 로고    scopus 로고
    • An extension of Box-jenkins transfer/noise models for spatial interpolation of groundwater head series
    • van Geer FC, Zuur AF (1997) An extension of Box-jenkins transfer/noise models for spatial interpolation of groundwater head series. J Hydrol 192: 65-80.
    • (1997) J Hydrol , vol.192 , pp. 65-80
    • van Geer, F.C.1    Zuur, A.F.2
  • 50
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward J H (1963) Hierarchical grouping to optimize an objective function. J Amer Statist Assoc 58: 236-244.
    • (1963) J Amer Statist Assoc , vol.58 , pp. 236-244
    • Ward, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.