메뉴 건너뛰기




Volumn 49, Issue , 2013, Pages 143-181

Approximating Multivariable Functions by Feedforward Neural Nets

Author keywords

Approximation rates; Best approximation; Feedforward neural networks; Multivariable approximation; Network complexity; Tractability of approximation; Variational norm

Indexed keywords


EID: 84885640618     PISSN: 18684394     EISSN: 18684408     Source Type: Book Series    
DOI: 10.1007/978-3-642-36657-4_5     Document Type: Article
Times cited : (23)

References (75)
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on Information Theory 39, 930-945 (1993)
    • (1993) IEEE Trans. on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 3
    • 85012688561 scopus 로고
    • Princeton University Press, Princeton
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 6
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification and function approximation
    • Breiman, L.: Hinging hyperplanes for regression, classification and function approximation. IEEE Trans. Inform. Theory 39(3), 999-1013 (1993)
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 999-1013
    • Breiman, L.1
  • 9
    • 21844505259 scopus 로고
    • Neural networks for localized approximation
    • Chui, C.K., Li, X., Mhaskar, H.N.: Neural networks for localized approximation. Math. of Computation 63, 607-623 (1994)
    • (1994) Math. of Computation , vol.63 , pp. 607-623
    • Chui, C.K.1    Li, X.2    Mhaskar, H.N.3
  • 11
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 2, 303-314 (1989)
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 15
    • 0003085388 scopus 로고
    • Rates of convergence for Radial Basis Functions and neural networks
    • In: Mammone, R.J. (ed.), Chapman & Hall
    • Girosi, F., Anzellotti, G.: Rates of convergence for Radial Basis Functions and neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97-113. Chapman & Hall (1993)
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2
  • 16
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • Girosi, F., Poggio, T.: Networks and the best approximation property. Biological Cybernetics 63, 169-176 (1990)
    • (1990) Biological Cybernetics , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 18
    • 77949570561 scopus 로고    scopus 로고
    • Estimates of variation with respect to a set and applications to optimization problems
    • Gnecco, G., Sanguineti, M.: Estimates of variation with respect to a set and applications to optimization problems. J. of Optimization Theory and Applications 145, 53-75 (2010)
    • (2010) J. of Optimization Theory and Applications , vol.145 , pp. 53-75
    • Gnecco, G.1    Sanguineti, M.2
  • 19
    • 78650896759 scopus 로고    scopus 로고
    • On a variational norm tailored to variable-basis approximation schemes
    • Gnecco, G., Sanguineti, M.: On a variational norm tailored to variable-basis approximation schemes. IEEE Trans. on Information Theory 57, 549-558 (2011)
    • (2011) IEEE Trans. on Information Theory , vol.57 , pp. 549-558
    • Gnecco, G.1    Sanguineti, M.2
  • 20
    • 32944458952 scopus 로고    scopus 로고
    • On the exponential convergence of matching pursuits in quasi-incoherent dictionaries
    • Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. on Information Theory 52, 255-261 (2006)
    • (2006) IEEE Trans. on Information Theory , vol.52 , pp. 255-261
    • Gribonval, R.1    Vandergheynst, P.2
  • 21
    • 0031212925 scopus 로고    scopus 로고
    • Approximation and learning of convex superpositions
    • Gurvits, L., Koiran, P.: Approximation and learning of convex superpositions. J. of Computer and System Sciences 55, 161-170 (1997)
    • (1997) J. of Computer and System Sciences , vol.55 , pp. 161-170
    • Gurvits, L.1    Koiran, P.2
  • 22
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation 2, 210-215 (1990)
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 24
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3, 551-560 (1990)
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 25
    • 0025799121 scopus 로고
    • Representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory
    • Ito, Y.: Representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory. Neural Networks 4, 385-394 (1991)
    • (1991) Neural Networks , vol.4 , pp. 385-394
    • Ito, Y.1
  • 26
    • 0001929506 scopus 로고
    • Finite mapping by neural networks and truth functions
    • Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical Scientist 17, 69-77 (1992)
    • (1992) Mathematical Scientist , vol.17 , pp. 69-77
    • Ito, Y.1
  • 27
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20, 608-613 (1992)
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 30
    • 56949103612 scopus 로고    scopus 로고
    • Complexity of Gaussian radial basis networks approximating smooth functions
    • Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63-74 (2009)
    • (2009) J. of Complexity , vol.25 , pp. 63-74
    • Kainen, P.C.1    Kůrková, V.2    Sanguineti, M.3
  • 31
    • 84856932727 scopus 로고    scopus 로고
    • Dependence of Computational Models on Input Dimension: Tractability of Approximation and Optimization Tasks
    • Kainen, P.C., Kurkova, V., Sanguineti, M.: Dependence of Computational Models on Input Dimension: Tractability of Approximation and Optimization Tasks. IEEE Transactions on Information Theory 58, 1203-1214 (2012)
    • (2012) IEEE Transactions on Information Theory , vol.58 , pp. 1203-1214
    • Kainen, P.C.1    Kurkova, V.2    Sanguineti, M.3
  • 32
    • 0008241587 scopus 로고    scopus 로고
    • Geometry and topology of continuous best and near best approximations
    • Kainen, P.C., Kůrková, V., Vogt, A.: Geometry and topology of continuous best and near best approximations. J. of Approximation Theory 105, 252-262 (2000)
    • (2000) J. of Approximation Theory , vol.105 , pp. 252-262
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 33
    • 0043289787 scopus 로고    scopus 로고
    • Continuity of approximation by neural networks in Lp-spaces
    • Kainen, P.C., Kůrková, V., Vogt, A.: Continuity of approximation by neural networks in Lp-spaces. Annals of Operational Research 101, 143-147 (2001)
    • (2001) Annals of Operational Research , vol.101 , pp. 143-147
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 34
    • 0038009873 scopus 로고    scopus 로고
    • Best approximation by linear combinations of characteristic functions of half-spaces
    • Kainen, P.C., Kůrková, V., Vogt, A.: Best approximation by linear combinations of characteristic functions of half-spaces. J. of Approximation Theory 122, 151-159 (2003)
    • (2003) J. of Approximation Theory , vol.122 , pp. 151-159
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 35
    • 34447641642 scopus 로고    scopus 로고
    • A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves
    • Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves. J. of Approximation Theory 147, 1-10 (2007)
    • (2007) J. of Approximation Theory , vol.147 , pp. 1-10
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 36
    • 0003026625 scopus 로고
    • Big omicron and big omega and big theta
    • Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8, 18-24 (1976)
    • (1976) SIGACT News , vol.8 , pp. 18-24
    • Knuth, D.E.1
  • 37
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kůrková, V.: Kolmogorov's theorem and multilayer neural networks. Neural Networks 5, 501-506 (1992)
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kůrková, V.1
  • 38
    • 0028790449 scopus 로고
    • Approximation of functions by perceptron networks with bounded number of hidden units
    • Kůrková, V.: Approximation of functions by perceptron networks with bounded number of hidden units. Neural Networks 8, 745-750 (1995)
    • (1995) Neural Networks , vol.8 , pp. 745-750
    • Kůrková, V.1
  • 39
  • 40
    • 0002806299 scopus 로고    scopus 로고
    • Incremental approximation by neural networks
    • In: Warwick, K., Kárný, M., Kůrková, V. (eds.), Springer, London
    • Kůrková, V.: Incremental approximation by neural networks. In: Warwick, K., Kárný, M., Kůrková, V. (eds.) Complexity: Neural Network Approach, pp. 177-188. Springer, London (1998)
    • (1998) Complexity: Neural Network Approach , pp. 177-188
    • Kůrková, V.1
  • 41
    • 4043167595 scopus 로고    scopus 로고
    • High-dimensional approximation and optimization by neural networks
    • In: Suykens, J., et al. (eds.), ch. 4, IOS Press, Amsterdam
    • Kůrková, V.: High-dimensional approximation and optimization by neural networks. In: Suykens, J., et al. (eds.) Advances in Learning Theory: Methods, Models and Applications, ch. 4, pp. 69-88. IOS Press, Amsterdam (2003)
    • (2003) Advances in Learning Theory: Methods, Models and Applications , pp. 69-88
    • Kůrková, V.1
  • 42
    • 37748999976 scopus 로고    scopus 로고
    • Minimization of error functionals over perceptron networks
    • Kůrková, V.: Minimization of error functionals over perceptron networks. Neural Computation 20, 252-270 (2008)
    • (2008) Neural Computation , vol.20 , pp. 252-270
    • Kůrková, V.1
  • 43
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10, 1061-1068 (1997)
    • (1997) Neural Networks , vol.10 , pp. 1061-1068
    • Kůrková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 44
    • 24544481301 scopus 로고
    • Uniqueness of functional representations by Gaussian basis function networks
    • Springer, London
    • Kůrková, V., Neruda, R.: Uniqueness of functional representations by Gaussian basis function networks. In: Proceedings of ICANN 1994, pp. 471-474. Springer, London (1994)
    • (1994) Proceedings of ICANN 1994 , pp. 471-474
    • Kůrková, V.1    Neruda, R.2
  • 45
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neuralnetwork approximation
    • Kůrková, V., Sanguineti, M.: Bounds on rates of variable-basis and neuralnetwork approximation. IEEE Trans. on Information Theory 47, 2659-2665 (2001)
    • (2001) IEEE Trans. on Information Theory , vol.47 , pp. 2659-2665
    • Kůrková, V.1    Sanguineti, M.2
  • 46
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • Kůrková, V., Sanguineti, M.: Comparison of worst case errors in linear and neural network approximation. IEEE Trans. on Information Theory 48, 264-275 (2002)
    • (2002) IEEE Trans. on Information Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 47
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. on Optimization 15, 261-287 (2005)
    • (2005) SIAM J. on Optimization , vol.15 , pp. 261-287
    • Kůrková, V.1    Sanguineti, M.2
  • 48
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods of bounded complexity. J. of Complexity 21, 350-367 (2005)
    • (2005) J. of Complexity , vol.21 , pp. 350-367
    • Kůrková, V.1    Sanguineti, M.2
  • 49
    • 34547732358 scopus 로고    scopus 로고
    • Estimates of covering numbers of convex sets with slowly decaying orthogonal subsets
    • Kůrková, V., Sanguineti, M.: Estimates of covering numbers of convex sets with slowly decaying orthogonal subsets. Discrete Applied Mathematics 155, 1930-1942 (2007)
    • (2007) Discrete Applied Mathematics , vol.155 , pp. 1930-1942
    • Kůrková, V.1    Sanguineti, M.2
  • 50
    • 61349203972 scopus 로고    scopus 로고
    • Approximate minimization of the regularized expected error over kernel models
    • Kůrková, V., Sanguineti, M.: Approximate minimization of the regularized expected error over kernel models. Mathematics of Operations Research 33, 747-756 (2008)
    • (2008) Mathematics of Operations Research , vol.33 , pp. 747-756
    • Kůrková, V.1    Sanguineti, M.2
  • 51
    • 57349097663 scopus 로고    scopus 로고
    • Geometric upper bounds on rates of variable-basis approximation
    • Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approximation. IEEE Trans. on Information Theory 54, 5681-5688 (2008)
    • (2008) IEEE Trans. on Information Theory , vol.54 , pp. 5681-5688
    • Kůrková, V.1    Sanguineti, M.2
  • 52
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Networks 11, 651-659 (1998)
    • (1998) Neural Networks , vol.11 , pp. 651-659
    • Kůrková, V.1    Savický, P.2    Hlaváčková, K.3
  • 53
    • 0036505609 scopus 로고    scopus 로고
    • On the geometric convergence of neural approximations
    • Lavretsky, E.: On the geometric convergence of neural approximations. IEEE Trans. on Neural Networks 13, 274-282 (2002)
    • (2002) IEEE Trans. on Neural Networks , vol.13 , pp. 274-282
    • Lavretsky, E.1
  • 54
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861-867 (1993)
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 55
    • 0030119952 scopus 로고    scopus 로고
    • Random approximants and neural networks
    • Makovoz, Y.: Random approximants and neural networks. J. of Approximation Theory 85, 98-109 (1996)
    • (1996) J. of Approximation Theory , vol.85 , pp. 98-109
    • Makovoz, Y.1
  • 57
    • 3242701678 scopus 로고    scopus 로고
    • On the tractability of multivariate integration and approximation by neural networks
    • Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. of Complexity 20, 561-590 (2004)
    • (2004) J. of Complexity , vol.20 , pp. 561-590
    • Mhaskar, H.N.1
  • 58
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • Micchelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11-22 (1986)
    • (1986) Constructive Approximation , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 59
    • 0031140389 scopus 로고    scopus 로고
    • Adaptive control using neural networks and approximate models
    • Narendra, K.S., Mukhopadhyay, S.: Adaptive control using neural networks and approximate models. IEEE Trans. on Neural Networks 8, 475-485 (1997)
    • (1997) IEEE Trans. on Neural Networks , vol.8 , pp. 475-485
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 60
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3, 246-257 (1991)
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 61
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • Park, J., Sandberg, I.W.: Approximation and radial-basis-function networks. Neural Computation 5, 305-316 (1993)
    • (1993) Neural Computation , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 62
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143-195 (1999)
    • (1999) Acta Numerica , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 63
    • 0003345901 scopus 로고
    • Remarques sur un résultat non publié de B
    • Palaiseau, France. École Polytechnique, Centre de Mathématiques
    • Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d'Analyse Fonctionnelle 1980-1981, Palaiseau, France. École Polytechnique, Centre de Mathématiques, vol. I(12) (1981)
    • (1981) Maurey. Séminaire d'Analyse Fonctionnelle 1980-1981 , vol.1 , Issue.12
    • Pisier, G.1
  • 64
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization of the brain
    • Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization of the brain. Psychological Review 65, 386-408 (1958)
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 66
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski, T.J., Rosenberg, C.: Parallel networks that learn to pronounce English text. Complex Systems 1, 145-168 (1987)
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.2
  • 68
    • 0002381070 scopus 로고    scopus 로고
    • Neural networks for combinatorial optimization: A review of more than a decade of research
    • Smith, K.A.: Neural networks for combinatorial optimization: A review of more than a decade of research. INFORMS J. on Computing 11, 15-34 (1999)
    • (1999) INFORMS J. on Computing , vol.11 , pp. 15-34
    • Smith, K.A.1
  • 69
    • 0025558060 scopus 로고
    • Approximation and learning unknown mappings using multilayer feedforward networks with bounded weights
    • Stinchcombe, M., White, H.: Approximation and learning unknown mappings using multilayer feedforward networks with bounded weights. In: Proc. Int. Joint Conf. on Neural Networks IJCNN 1990, pp. III7-III16 (1990)
    • (1990) Proc. Int. Joint Conf. on Neural Networks IJCNN 1990
    • Stinchcombe, M.1    White, H.2
  • 71
    • 0035702785 scopus 로고    scopus 로고
    • Complexity of weighted approximation over Rd
    • Wasilkowski, G.W., Woźniakowski, H.: Complexity of weighted approximation over Rd. J. of Complexity 17, 722-740 (2001)
    • (2001) J. of Complexity , vol.17 , pp. 722-740
    • Wasilkowski, G.W.1    Woźniakowski, H.2
  • 72
    • 38149143192 scopus 로고
    • Tractability and strong tractability of linear multivariate problems
    • Woźniakowski, H.: Tractability and strong tractability of linear multivariate problems. J. of Complexity 10, 96-128 (1994)
    • (1994) J. of Complexity , vol.10 , pp. 96-128
    • Woźniakowski, H.1
  • 75
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating networks and extended Ritz method for the solution of functional optimization problems. J. of Optimization Theory and Applications 112, 403-439 (2002)
    • (2002) J. of Optimization Theory and Applications , vol.112 , pp. 403-439
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.