메뉴 건너뛰기




Volumn 15, Issue 2, 2005, Pages 461-487

Error estimates for approximate optimization by the extended ritz method

Author keywords

(Extended) ritz method; Convex best approximation problems; Curse of dimensionality; Functional optimization; Learning from data by kernel methods; Rates of convergence of suboptimal solutions

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; ERROR ANALYSIS; FUNCTIONS; MATHEMATICAL TECHNIQUES; OPTIMIZATION; PROBLEM SOLVING;

EID: 18744392546     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/S1052623403426507     Document Type: Article
Times cited : (67)

References (82)
  • 2
  • 4
    • 0036506049 scopus 로고    scopus 로고
    • Optimization-based learning with bounded error for feedforward neural networks
    • A. ALESSANDRI, M. SANGUINETI, AND M. MAGGIORE, Optimization-based learning with bounded error for feedforward neural networks, IEEE Trans. Neural Networks, 13 (2002), pp. 261-273.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 261-273
    • Alessandri, A.1    Sanguineti, M.2    Maggiore, M.3
  • 5
    • 12444304456 scopus 로고    scopus 로고
    • Optimization of approximating networks for optimal fault diagnosis
    • A. ALESSANDRI AND M. SANGUINETI, Optimization of approximating networks for optimal fault diagnosis, Optim. Methods Softw., 20 (2005), pp. 235-260.
    • (2005) Optim. Methods Softw. , vol.20 , pp. 235-260
    • Alessandri, A.1    Sanguineti, M.2
  • 6
    • 0021507437 scopus 로고
    • On the approximation of infinite optimization problems with an application to optimal control problems
    • W. ALT, On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Optim., 12 (1984), pp. 15-27.
    • (1984) Appl. Math. Optim. , vol.12 , pp. 15-27
    • Alt, W.1
  • 7
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), pp. 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 8
    • 0035439793 scopus 로고    scopus 로고
    • Numerical solutions to the Witsenhausen counterexample by approximating networks
    • M. BAGLIETTO, T. PARISINI, AND R. ZOPPOLI, Numerical solutions to the Witsenhausen counterexample by approximating networks, IEEE Trans. Automat. Control, 46 (2001), pp. 1471-1477.
    • (2001) IEEE Trans. Automat. Control , vol.46 , pp. 1471-1477
    • Baglietto, M.1    Parisini, T.2    Zoppoli, R.3
  • 9
    • 0035330108 scopus 로고    scopus 로고
    • Distributed-information neural control: The case of dynamic routing in traffic networks
    • M. BAGLIETTO, T. PARISINI, AND R. ZOPPOLI, Distributed-information neural control: The case of dynamic routing in traffic networks, IEEE Trans. Neural Networks, 12 (2001), pp. 485-502.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 485-502
    • Baglietto, M.1    Parisini, T.2    Zoppoli, R.3
  • 10
    • 18744415637 scopus 로고    scopus 로고
    • Facing the curse of dimensionality by the extended Ritz method in stochastic functional optimization: Dynamic routing in traffic networks
    • G. Di Pillo and A. Murli, eds., Kluwer Academic Publishers, Norwell, MA
    • M. BAGLIETTO, M. SANGUINETI, AND R. ZOPPOLI, Facing the curse of dimensionality by the extended Ritz method in stochastic functional optimization: Dynamic routing in traffic networks, in High Performance Algorithms and Software for Nonlinear Optimization, G. Di Pillo and A. Murli, eds., Kluwer Academic Publishers, Norwell, MA, 2003, pp. 23-56.
    • (2003) High Performance Algorithms and Software for Nonlinear Optimization , pp. 23-56
    • Baglietto, M.1    Sanguineti, M.2    Zoppoli, A.R.3
  • 12
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A. R. BARRON, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory, 39 (1993), pp. 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 13
    • 0032202335 scopus 로고    scopus 로고
    • Successive Galerkin approximation algorithms for nonlinear optimal and robust control, Internat
    • R. W. BEARD AND T. W. MCLAIN, Successive Galerkin approximation algorithms for nonlinear optimal and robust control, Internat. J. Control, 71 (1998), pp. 717-743.
    • (1998) J. Control , vol.71 , pp. 717-743
    • Beard, R.W.1    Mclain, T.W.2
  • 14
    • 0003787146 scopus 로고
    • Princeton University Press, Princeton, NJ
    • R. BELLMAN, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 15
    • 77957009494 scopus 로고
    • Linear inverse and ill-posed problems
    • M. BERTERO, Linear inverse and ill-posed problems, Adv. Electron. Electron. Phys., 75 (1989), pp. 1-120.
    • (1989) Adv. Electron. Electron. Phys. , vol.75 , pp. 1-120
    • Bertero, M.1
  • 17
  • 21
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. BREIMAN, Hinging hyperplanes for regression, classification, and function approximation, IEEE Trans. Inform. Theory, 39 (1993), pp. 999-1013.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 999-1013
    • Breiman, L.1
  • 23
    • 0029308580 scopus 로고
    • Adaptive control of a class of nonlinear discrete-time systems using multilayer neural networks
    • F. C. CHEN AND H. KHALIL, Adaptive control of a class of nonlinear discrete-time systems using multilayer neural networks, IEEE Trans. Automat. Control, 40 (1995), pp. 791-801.
    • (1995) IEEE Trans. Automat. Control , vol.40 , pp. 791-801
    • Chen, F.C.1    Khalil, H.2
  • 24
    • 0001820934 scopus 로고    scopus 로고
    • Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming
    • V. C. P. CHEN, D. RUPPERT, AND C. A. SHOEMAKER, Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming, Oper. Res., 47 (1999), pp. 38-53.
    • (1999) Oper. Res. , vol.47 , pp. 38-53
    • Chen, V.C.P.1    Ruppert, D.2    Shoemaker, A.C.A.3
  • 25
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. CUCKER AND S. SMALE, On the mathematical foundations of learning, Bull. Amer. Math. Soc. (N.S.), 39 (2001), pp. 1-49.
    • (2001) Bull. Amer. Math. Soc. (N.S.) , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 27
    • 0039178857 scopus 로고
    • The Ritz-Galerkin method for abstract optimal control problems
    • J. W. DANIEL, The Ritz-Galerkin method for abstract optimal control problems, SIAM J. Control, 11 (1973), pp. 53-63.
    • (1973) SIAM J. Control , vol.11 , pp. 53-63
    • Daniel, J.W.1
  • 32
    • 21844508292 scopus 로고
    • Nonlinear approximation by trigonometric sums
    • R. A. DEVORE AND V. N. TEMLYAKOV, Nonlinear approximation by trigonometric sums, J. Fourier Anal. Appl., 2 (1995), pp. 29-48.
    • (1995) J. Fourier Anal. Appl. , vol.2 , pp. 29-48
    • Devore, R.A.1    Temlyakov, V.N.2
  • 33
    • 0003256848 scopus 로고
    • Perturbations, approximations and sensitivity analysis of optimal control systems
    • Springer, Berlin, Heidelberg
    • A. L. DONTCHEV, Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Inform. Sci. 52, Springer, Berlin, Heidelberg, 1983.
    • (1983) Lecture Notes in Control and Inform. Sci. , vol.52
    • Dontchev, A.L.1
  • 34
    • 0003201683 scopus 로고
    • Well-posed optimization problems
    • Springer, Berlin, Heidelberg
    • A. L. DONTCHEV AND T. ZOLEZZI, Well-Posed Optimization Problems, Lecture Notes in Math. 1543, Springer, Berlin, Heidelberg, 1993.
    • (1993) Lecture Notes in Math. , vol.1543
    • Dontchev, A.L.1    Zolezzi, T.2
  • 38
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. GIROSI, M. JONES, AND T. POGGIO, Regularization theory and neural networks architectures, Neural Computation, 7 (1995), pp. 219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 40
    • 0001546764 scopus 로고    scopus 로고
    • Convergent on-line algorithms for supervised learning in neural networks
    • L. GRIPPO, Convergent on-line algorithms for supervised learning in neural networks, IEEE Trans. Neural Networks, 11 (2000), pp. 1284-1299.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1284-1299
    • Grippo, L.1
  • 41
    • 0016624279 scopus 로고
    • The Ritz-Trefftz method for state and control constrained optimal control problems
    • W. W. HAGER, The Ritz-Trefftz method for state and control constrained optimal control problems, SIAM J. Numer. Anal., 12 (1975), pp. 854-867.
    • (1975) SIAM J. Numer. Anal. , vol.12 , pp. 854-867
    • Hager, W.W.1
  • 43
    • 0005272890 scopus 로고
    • Approximating best approximations
    • R. B. HOLMES, Approximating best approximations, Nieuw Archief voor Wiskunde, XIV(3), (1966), pp. 106-113.
    • (1966) Nieuw Archief Voor Wiskunde , vol.14 , Issue.3 , pp. 106-113
    • Holmes, R.B.1
  • 44
    • 0003330528 scopus 로고
    • A course on optimization and best approximation
    • Springer, Berlin
    • R. B. HOLMES, A Course on Optimization and Best Approximation, Lecture Notes in Math. 257, Springer, Berlin, 1972.
    • (1972) Lecture Notes in Math. , vol.257
    • Holmes, R.B.1
  • 45
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hubert space and convergence rates for projection pursuit regression and neural network training
    • L. K. JONES, A simple lemma on greedy approximation in Hubert space and convergence rates for projection pursuit regression and neural network training, Ann. Statist., 20 (1992), pp. 608-613.
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 46
    • 0027601994 scopus 로고
    • Numerical solution of continuous-state dynamic programs using linear and spline interpolation
    • S. A. JOHNSON, J. R. STEDINGER, C. SHOEMAKER, Y. Li, AND J. TEJADA-GUIBERT, Numerical solution of continuous-state dynamic programs using linear and spline interpolation, Oper. Res., 41 (1993), pp. 484-500.
    • (1993) Oper. Res. , vol.41 , pp. 484-500
    • Johnson, S.A.1    Stedinger, J.R.2    Shoemaker, C.3    Li, Y.4    Tejada-Guibert, A.J.5
  • 48
    • 2542498732 scopus 로고    scopus 로고
    • Minimization of error functional over variable-basis functions
    • P. C. KAINEN, V. KŮRKOVÁ, AND M. SANGUINETI, Minimization of error functional over variable-basis functions, SIAM J. Optim., 14 (2003), pp. 732-742.
    • (2003) SIAM J. Optim. , vol.14 , pp. 732-742
    • Kainen, P.C.1    Kůrková, V.2    Sanguineti, M.3
  • 49
    • 18744387645 scopus 로고    scopus 로고
    • An integral formula for Heaviside neural networks
    • P. C. KAINEN, V. KŮRKOVÁ, AND A. VOGT, An integral formula for Heaviside neural networks, Neural Network World, 10 (2000), pp. 313-319.
    • (2000) Neural Network World , vol.10 , pp. 313-319
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 50
    • 18744396594 scopus 로고    scopus 로고
    • Upper bounds on variation with respect to half-spaces
    • Institute of Computer Science, Prague
    • P. C. KAINEN, V. KŮRKOVá, AND A. VOGT, Upper Bounds on Variation with Respect to Half-Spaces, Research Report ICS-2004-900, Institute of Computer Science, Prague, 2004.
    • (2004) Research Report ICS-2004-900
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 51
    • 0000025506 scopus 로고    scopus 로고
    • Dimension-independent rates of approximation by neural networks
    • The Curse of Dimensionality, K. Warwick and M. Kárný, eds., Birkhäuser, Boston
    • V. KŮRKOVÁ, Dimension-independent rates of approximation by neural networks, in Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality, K. Warwick and M. Kárný, eds., Birkhäuser, Boston, 1997, pp. 261-270.
    • (1997) Computer-Intensive Methods in Control and Signal Processing , pp. 261-270
    • Kůrková, V.1
  • 52
    • 18744368692 scopus 로고    scopus 로고
    • Neural networks as universal approximators
    • M. Arbib, ed., MIT Press, Cambridge, MA
    • V. KŮRKOVá, Neural networks as universal approximators, in The Handbook of Brain Theory and Neural Networks, M. Arbib, ed., MIT Press, Cambridge, MA, 2002, pp. 1180-1183.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 1180-1183
    • Kůrková, V.1
  • 53
    • 4043167595 scopus 로고    scopus 로고
    • High-dimensional approximation and optimization by neural networks
    • J. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, eds., IOS Press, Amsterdam
    • V. KŮRKOVÁ, High-dimensional approximation and optimization by neural networks, in Advances in Learning Theory: Methods, Models, and Applications, J. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, eds., IOS Press, Amsterdam, 2003, pp. 69-88.
    • (2003) Advances in Learning Theory: Methods, Models, and Applications , pp. 69-88
    • Kůrková, V.1
  • 54
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • V. KŮRKOVÁ, P. C. KAINEN, AND V. KREINOVICH, Estimates of the number of hidden units and variation with respect to half-spaces, Neural Networks, 10 (1997), pp. 1061-1068.
    • (1997) Neural Networks , vol.10 , pp. 1061-1068
    • Kůrková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 55
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • V. KŮRKOVÁ AND M. SANGUINETI, Bounds on rates of variable-basis and neural-network approximation, IEEE Trans. Inform. Theory, 47 (2001), pp. 2659-2665.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2659-2665
    • Kůrková, V.1    Sanguineti, M.2
  • 56
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • V. KŮRKOVÁ AND M. SANGUINETI, Comparison of worst case errors in linear and neural network approximation, IEEE Trans. Inform. Theory, 48 (2002), pp. 264-275.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 57
    • 85050895522 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • to appear
    • V. KŮRKOVÁ AND M. SANGUINETI, Learning with generalization capability by kernel methods of bounded complexity, J. Complexity, to appear.
    • J. Complexity
    • Kůrková, V.1    Sanguineti, M.2
  • 58
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • V. KŮRKOVÁ P. SAVICKÝ, AND K. HLAVÁČ KOVÁ, Representations and rates of approximation of real-valued Boolean functions by neural networks, Neural Networks, 11 (1998), pp. 651-659.
    • (1998) Neural Networks , vol.11 , pp. 651-659
    • Kůrková, V.1    Savický, P.2    Hlaváčková, K.3
  • 59
    • 0001671709 scopus 로고
    • Convergence of minimizing sequences in conditional extremum problems
    • E. S. LEVITIN AND B. T. POLYAK, Convergence of minimizing sequences in conditional extremum problems, Dokl. Akad. Nauk SSSR, 168 (1966), pp. 764-767.
    • (1966) Dokl. Akad. Nauk SSSR , vol.168 , pp. 764-767
    • Levitin, E.S.1    Polyak, B.T.2
  • 60
    • 0012739739 scopus 로고    scopus 로고
    • Convergent Ritz approximations of the set of stabilizing controllers
    • A. LINNEMANN, Convergent Ritz approximations of the set of stabilizing controllers, Systems Control Lett., 36 (1998), pp. 151-156.
    • (1998) Systems Control Lett. , vol.36 , pp. 151-156
    • Linnemann, A.1
  • 61
    • 0031140389 scopus 로고    scopus 로고
    • Adaptive control using neural networks and approximate models
    • K. S. NARENDRA AND S. MUKHOPADHYAY, Adaptive control using neural networks and approximate models, IEEE Trans. Neural Networks, 8 (1997), pp. 475-485.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 475-485
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 62
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. S. NARENDRA AND K. PARTHASARATHI, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks, 4 (1990), pp. 4-26.
    • (1990) IEEE Trans. Neural Networks , vol.4 , pp. 4-26
    • Narendra, K.S.1    Parthasarathi, K.2
  • 63
    • 0003991797 scopus 로고
    • Numerical analysis: A second course
    • SIAM, Philadelphia
    • J. M. ORTEGA, Numerical Analysis: A Second Course, Classics Appl. Math. 3, SIAM, Philadelphia, 1990.
    • (1990) Classics Appl. Math. , vol.3
    • Ortega, J.M.1
  • 64
    • 0032096305 scopus 로고    scopus 로고
    • Nonlinear stabilization by receding-horizon neural regulators
    • T. PARISINI, M. SANGUINETI, AND R. ZOPPOLI, Nonlinear stabilization by receding-horizon neural regulators, Internat. J. Control, 70 (1998), pp. 341-362.
    • (1998) Internat. J. Control , vol.70 , pp. 341-362
    • Parisini, T.1    Sanguineti, M.2    Zoppoli, R.3
  • 65
    • 0028425062 scopus 로고
    • Neural networks for feedback feedforward nonlinear control systems
    • T. PARISINI AND R. ZOPPOLI, Neural networks for feedback feedforward nonlinear control systems, IEEE Trans. Neural Networks, 5 (1994), pp. 436-449.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 66
    • 0030169366 scopus 로고    scopus 로고
    • Neural approximations for multistage optimal control of nonlinear stochastic systems
    • T. PARISINI AND R. ZOPPOLI, Neural approximations for multistage optimal control of nonlinear stochastic systems, IEEE Trans. Automat. Control, 41 (1996), pp. 889-895.
    • (1996) IEEE Trans. Automat. Control , vol.41 , pp. 889-895
    • Parisini, T.1    Zoppoli, R.2
  • 68
    • 0003345901 scopus 로고
    • Remarques sur un résultat non publié de B. Maurey
    • Exposé no. V, École Polytechnique, Centre de Mathémaiques, Palaiseau, France
    • G. PISIER, Remarques sur un résultat non publié de B. Maurey, Séminaire d'Analyse Fonctionnelle 1980-81, Exposé no. V, École Polytechnique, Centre de Mathémaiques, Palaiseau, France, pp. V.1-V.12.
    • (1980) Séminaire D'Analyse Fonctionnelle
    • Pisier, G.1
  • 69
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • T. POGGIO AND S. SMALE, The mathematics of learning: Dealing with data, Notices Amer. Math. Soc., 50 (2003), pp. 536-544.
    • (2003) Notices Amer. Math. Soc. , vol.50 , pp. 536-544
    • Poggio, T.1    Smale, S.2
  • 70
    • 0042391293 scopus 로고
    • Existence theorems and convergence of minimizing sequences in extremum prob lems with restrictions
    • B. T. POLAK, Existence theorems and convergence of minimizing sequences in extremum prob lems with restrictions, Dokl. Akad. Nauk SSSR, 166 (1966), pp. 72-75.
    • (1966) Dokl. Akad. Nauk SSSR , vol.166 , pp. 72-75
    • Polak, B.T.1
  • 71
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • I: Foundations, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds., MIT, Cambridge, MA
    • D. E. RUMELHART, G. E. HINTON, AND R. J. WILLIAMS, Learning internal representation by error propagation, in Parallel Distributed Processing: Explorations in the Microstructures of Cognition, I: Foundations, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds., MIT, Cambridge, MA, 1986, pp. 318-362.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructures of Cognition , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, A.R.J.3
  • 73
    • 0018544387 scopus 로고
    • Convergence of the control parametrization Ritz method for nonlinear optimal control problems
    • H. R. SIRISENA AND F. S. CHOU, Convergence of the control parametrization Ritz method for nonlinear optimal control problems, J. Optim. Theory Appl., 29 (1979), pp. 369-382.
    • (1979) J. Optim. Theory Appl. , vol.29 , pp. 369-382
    • Sirisena, H.R.1    Chou, F.S.2
  • 75
    • 18744404737 scopus 로고
    • An error estimate for approximate solutions in one-sided variational problems
    • V. B. TJUHTIN, An error estimate for approximate solutions in one-sided variational problems, Vestnik Leningrad Univ. Math., 14 (1982), pp. 247-254.
    • (1982) Vestnik Leningrad Univ. Math. , vol.14 , pp. 247-254
    • Tjuhtin, V.B.1
  • 76
    • 0032222083 scopus 로고    scopus 로고
    • Incremental gradient(-projection) method with momentum term and adaptive step-size rule
    • P. TSENG, Incremental gradient(-projection) method with momentum term and adaptive step-size rule, SIAM J. Optim., 8 (1998), pp. 506-531.
    • (1998) SIAM J. Optim. , vol.8 , pp. 506-531
    • Tseng, P.1
  • 80
    • 0033266803 scopus 로고    scopus 로고
    • Rates of convergence for a class of global stochastic optimization algorithms
    • G. YIN, Rates of convergence for a class of global stochastic optimization algorithms, SIAM J. Optim., 10 (1999), pp. 99-120.
    • (1999) SIAM J. Optim. , vol.10 , pp. 99-120
    • Yin, G.1
  • 81
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems
    • A. Isidori and T. J. Tarn, eds., Birkhäuser, Boston
    • R. ZOPPOLI AND T. PARISINI, Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems, in Systems, Models and Feedback: Theory and Applications, A. Isidori and T. J. Tarn, eds., Birkhäuser, Boston, 1992, pp. 193-210.
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2
  • 82
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • R. ZOPPOLI, M. SANGUINETI, AND T. PARISINI, Approximating networks and extended Ritz method for the solution of functional optimization problems, J. Optim. Theory Appl., 112 (2002), pp. 403-440.
    • (2002) J. Optim. Theory Appl. , vol.112 , pp. 403-440
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, A.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.