메뉴 건너뛰기




Volumn 145, Issue 1, 2010, Pages 53-75

Estimates of variation with respect to a set and applications to optimization problems

Author keywords

Approximation schemes; Convex hulls; Curse of dimensionality; Functional optimization; Learning from data; Radial basis functions; Ritz type methods; Variational norms

Indexed keywords

OPTIMIZATION; RADIAL BASIS FUNCTION NETWORKS;

EID: 77949570561     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-009-9620-6     Document Type: Article
Times cited : (9)

References (48)
  • 1
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • Kůrková, V., Sanguineti, M.: Bounds on rates of variable-basis and neural-network approximation. IEEE Trans. Inf. Theory 47, 2659-2665 (2001).
    • (2001) IEEE Trans. Inf. Theory , vol.47 , pp. 2659-2665
    • Kůrková, V.1    Sanguineti, M.2
  • 2
    • 57349097663 scopus 로고    scopus 로고
    • Geometric upper bounds on rates of variable-basis approximation
    • Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approximation. IEEE Trans. Inf. Theory 54, 5681-5688 (2008).
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 5681-5688
    • Kůrková, V.1    Sanguineti, M.2
  • 5
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. 18, 461-487 (2005).
    • (2005) SIAM J. Optim. , vol.18 , pp. 461-487
    • Kůrková, V.1    Sanguineti, M.2
  • 7
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39, 930-945 (1993).
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 8
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification and function approximation
    • Breiman, L.: Hinging hyperplanes for regression, classification and function approximation. IEEE Trans. Inf. Theory 39, 999-1013 (1993).
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 999-1013
    • Breiman, L.1
  • 9
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones, L. K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Ann. Stat. 20, 608-613 (1992).
    • (1992) Ann. Stat. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 10
    • 56949103612 scopus 로고    scopus 로고
    • Complexity of Gaussian-radial-basis networks approximating smooth functions
    • Kainen, P. C., Kurková, V., Sanguineti, M.: Complexity of Gaussian-radial-basis networks approximating smooth functions. J. Complex. 25, 63-74 (2009).
    • (2009) J. Complex. , vol.25 , pp. 63-74
    • Kainen, P.C.1    Kurková, V.2    Sanguineti, M.3
  • 12
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods of bounded complexity. J. Complex. 21, 350-367 (2005).
    • (2005) J. Complex. , vol.21 , pp. 350-367
    • Kůrková, V.1    Sanguineti, M.2
  • 13
    • 61349203972 scopus 로고    scopus 로고
    • Approximate minimization of the regularized expected error over kernel models
    • Kůrková, V., Sanguineti, M.: Approximate minimization of the regularized expected error over kernel models. Math. Oper. Res. 33, 747-756 (2008).
    • (2008) Math. Oper. Res. , vol.33 , pp. 747-756
    • Kůrková, V.1    Sanguineti, M.2
  • 14
    • 58149492837 scopus 로고    scopus 로고
    • Approximation schemes for functional optimization problems
    • Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems. J. Optim. Theory Appl. 140, 33-54 (2009).
    • (2009) J. Optim. Theory Appl. , vol.140 , pp. 33-54
    • Giulini, S.1    Sanguineti, M.2
  • 16
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating networks and extended Ritz method for the solution of functional optimization problems. J. Optim. Theory Appl. 112, 403-439 (2002).
    • (2002) J. Optim. Theory Appl. , vol.112 , pp. 403-439
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 18
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • Kůrková, V., Kainen, P. C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Netw. 10, 1061-1068 (1997).
    • (1997) Neural Netw. , vol.10 , pp. 1061-1068
    • Kůrková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 19
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Netw. 11, 651-659 (1998).
    • (1998) Neural Netw. , vol.11 , pp. 651-659
    • Kůrková, V.1    Savický, P.2    Hlaváčková, K.3
  • 20
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • R. J. Mammone (Ed.), London: Chapman & Hall
    • Girosi, F., Anzellotti, G.: Rates of convergence for radial basis functions and neural networks. In: Mammone, R. J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97-113. Chapman & Hall, London (1993).
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2
  • 21
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Am. Math. Soc. 39, 1-49 (2002).
    • (2002) Bull. Am. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 23
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems
    • A. Isidori and T. J. Tarn (Eds.), Boston: Birkhäuser
    • Zoppoli, R., Parisini, T.: Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems. In: Isidori, A., Tarn, T. J. (eds.) Systems, Models and Feedback: Theory and Applications, pp. 193-210. Birkhäuser, Boston (1992).
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2
  • 24
    • 77956438081 scopus 로고    scopus 로고
    • Suboptimal solutions to dynamic optimization problems via approximations of the policy functions
    • to appear
    • Gnecco, G., Sanguineti, M.: Suboptimal solutions to dynamic optimization problems via approximations of the policy functions. J. Optim. Theory Appl. (to appear).
    • J. Optim. Theory Appl.
    • Gnecco, G.1    Sanguineti, M.2
  • 25
    • 35348954934 scopus 로고    scopus 로고
    • Condition numbers and Ritz type methods in unconstrained optimization
    • Zolezzi, T.: Condition numbers and Ritz type methods in unconstrained optimization. Control Cybern. 36, 811-822 (2007).
    • (2007) Control Cybern. , vol.36 , pp. 811-822
    • Zolezzi, T.1
  • 27
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N.: Theory of reproducing kernels. Trans. AMS 68, 337-404 (1950).
    • (1950) Trans. AMS , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 28
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Comput. 10, 1455-1480 (1998).
    • (1998) Neural Comput. , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 30
    • 58849089302 scopus 로고    scopus 로고
    • Estimates of network complexity and integral representations
    • Berlin: Springer
    • Kainen, P. C., Kurková, V.: Estimates of network complexity and integral representations. In: Lecture Notes in Computer Science, vol. 5164, pp. 31-40. Springer, Berlin (2008).
    • (2008) Lecture Notes in Computer Science , vol.5164 , pp. 31-40
    • Kainen, P.C.1    Kurková, V.2
  • 39
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • Kůrková, V., Sanguineti, M.: Comparison of worst case errors in linear and neural network approximation. IEEE Trans. Inf. Theory 48, 264-275 (2002).
    • (2002) IEEE Trans. Inf. Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 40
    • 0008977715 scopus 로고
    • Remarques sur un résultat non publié de B. Maurey
    • Palaiseau: École Polytechnique, Centre de Mathématiques
    • Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d'Analyse Fonctionnelle 1980-81, vol. I, no. 12. École Polytechnique, Centre de Mathématiques, Palaiseau (1981).
    • (1981) Séminaire d'Analyse Fonctionnelle 1980-81 , vol.I , Issue.12
    • Pisier, G.1
  • 44
    • 0003787146 scopus 로고
    • Princeton: Princeton University Press
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957).
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 45
    • 0030119952 scopus 로고    scopus 로고
    • Random approximants and neural networks
    • Makovoz, Y.: Random approximants and neural networks. J. Approx. Theory 85, 98-109 (1996).
    • (1996) J. Approx. Theory , vol.85 , pp. 98-109
    • Makovoz, Y.1
  • 46
  • 48
    • 3242701678 scopus 로고    scopus 로고
    • On the tractability of multivariate integration and approximation by neural networks
    • Mhaskar, H. N.: On the tractability of multivariate integration and approximation by neural networks. J. Complex. 20, 561-590 (2004).
    • (2004) J. Complex. , vol.20 , pp. 561-590
    • Mhaskar, H.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.