메뉴 건너뛰기




Volumn 140, Issue 1, 2009, Pages 33-54

Approximation schemes for functional optimization problems

Author keywords

Approximation schemes; Complexity of admissible solutions; Curse of dimensionality; Extended Ritz method; Functional optimization; Ritz method; Upper bounds on accuracy

Indexed keywords

APPROXIMATION THEORY;

EID: 58149492837     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-008-9471-6     Document Type: Article
Times cited : (27)

References (41)
  • 2
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • V. Kůrková M. Sanguineti 2005 Error estimates for approximate optimization by the extended Ritz method SIAM J. Optim. 15 461 487
    • (2005) SIAM J. Optim. , vol.15 , pp. 461-487
    • Kůrková, V.1    Sanguineti, M.2
  • 3
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • R. Zoppoli M. Sanguineti T. Parisini 2002 Approximating networks and extended Ritz method for the solution of functional optimization problems J. Optim. Theory Appl. 112 403 440
    • (2002) J. Optim. Theory Appl. , vol.112 , pp. 403-440
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 4
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • V. Kůrková M. Sanguineti 2002 Comparison of worst case errors in linear and neural network approximation IEEE Trans. Inf. Theory 48 264 275
    • (2002) IEEE Trans. Inf. Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 5
    • 0003787146 scopus 로고
    • Princeton University Press Princeton
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 6
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Inf. Theory 39 930 945
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 7
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman 1993 Hinging hyperplanes for regression, classification, and function approximation IEEE Trans. Inf. Theory 39 999 1013
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 999-1013
    • Breiman, L.1
  • 10
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi M. Jones T. Poggio 1995 Regularization theory and neural networks architectures Neural Comput. 7 219 269
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 11
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L.K. Jones 1992 A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training Ann. Stat. 20 608 613
    • (1992) Ann. Stat. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 12
    • 2542498732 scopus 로고    scopus 로고
    • Minimization of error functionals over variable-basis functions
    • P.C. Kainen V. Kůrková M. Sanguineti 2003 Minimization of error functionals over variable-basis functions SIAM J. Optim. 14 732 742
    • (2003) SIAM J. Optim. , vol.14 , pp. 732-742
    • Kainen, P.C.1    Kůrková, V.2    Sanguineti, M.3
  • 13
    • 56949103612 scopus 로고    scopus 로고
    • Complexity of Gaussian radial basis networks approximating smooth functions
    • 10.1016/j.jco.2008.08.001
    • P.C. Kainen V. Kůrková M. Sanguineti 2008 Complexity of Gaussian radial basis networks approximating smooth functions J. Complex. 10.1016/j.jco.2008.08.001
    • (2008) J. Complex.
    • Kainen, P.C.1    Kůrková, V.2    Sanguineti, M.3
  • 15
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • V. Kůrková M. Sanguineti 2001 Bounds on rates of variable-basis and neural-network approximation IEEE Trans. Inf. Theory 47 2659 2665
    • (2001) IEEE Trans. Inf. Theory , vol.47 , pp. 2659-2665
    • Kůrková, V.1    Sanguineti, M.2
  • 16
    • 57349097663 scopus 로고    scopus 로고
    • Geometric upper bounds on rates of variable-basis approximation
    • to appear
    • Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approximation, IEEE Trans. Inf. Theory (to appear)
    • IEEE Trans. Inf. Theory
    • Kůrková, V.1    Sanguineti, M.2
  • 17
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H.N. Mhaskar 1996 Neural networks for optimal approximation of smooth and analytic functions Neural Comput. 8 164 177
    • (1996) Neural Comput. , vol.8 , pp. 164-177
    • Mhaskar, H.N.1
  • 19
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems
    • Birkhäuser Boston
    • Zoppoli, R., Parisini, T.: Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems. In: Isidori, A., Tarn, T.J. (eds.) Systems, Models and Feedback: Theory and Applications, pp. 193-210. Birkhäuser, Boston (1992)
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2    Isidori, A.3    Tarn, T.J.4
  • 24
    • 12444304456 scopus 로고    scopus 로고
    • Optimization of approximating networks for optimal fault diagnosis
    • A. Alessandri M. Sanguineti 2005 Optimization of approximating networks for optimal fault diagnosis Optim. Methods Softw. 20 235 260
    • (2005) Optim. Methods Softw. , vol.20 , pp. 235-260
    • Alessandri, A.1    Sanguineti, M.2
  • 25
    • 36049025849 scopus 로고    scopus 로고
    • Functional optimal estimation problems and their approximate solution
    • A. Alessandri C. Cervellera M. Sanguineti 2007 Functional optimal estimation problems and their approximate solution J. Optim. Theory Appl. 134 445 466
    • (2007) J. Optim. Theory Appl. , vol.134 , pp. 445-466
    • Alessandri, A.1    Cervellera, C.2    Sanguineti, M.3
  • 26
    • 33846098198 scopus 로고    scopus 로고
    • Design of asymptotic estimators: An approach based on neural networks and nonlinear programming
    • A. Alessandri C. Cervellera M. Sanguineti 2007 Design of asymptotic estimators: An approach based on neural networks and nonlinear programming IEEE Trans. Neural Netw. 18 86 96
    • (2007) IEEE Trans. Neural Netw. , vol.18 , pp. 86-96
    • Alessandri, A.1    Cervellera, C.2    Sanguineti, M.3
  • 29
    • 0036506049 scopus 로고    scopus 로고
    • Optimization-based learning with bounded error for feedforward neural networks
    • A. Alessandri M. Sanguineti M. Maggiore 2002 Optimization-based learning with bounded error for feedforward neural networks IEEE Trans. Neural Netw. 13 261 273
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 261-273
    • Alessandri, A.1    Sanguineti, M.2    Maggiore, M.3
  • 30
    • 0031285678 scopus 로고    scopus 로고
    • A new class of incremental gradient methods for least squares problems
    • D.P. Bertsekas 1997 A new class of incremental gradient methods for least squares problems SIAM J. Optim. 7 913 926
    • (1997) SIAM J. Optim. , vol.7 , pp. 913-926
    • Bertsekas, D.P.1
  • 32
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus 1999 Approximation theory of the MLP model in neural networks Acta Numer. 8 143 196
    • (1999) Acta Numer. , vol.8 , pp. 143-196
    • Pinkus, A.1
  • 33
    • 57649209233 scopus 로고    scopus 로고
    • Universal approximation by ridge computational models: A survey
    • M. Sanguineti 2008 Universal approximation by ridge computational models: A survey Open Appl. Math. J. 2 31 58
    • (2008) Open Appl. Math. J. , vol.2 , pp. 31-58
    • Sanguineti, M.1
  • 34
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • 2
    • J. Park I.W. Sandberg 1991 Universal approximation using radial-basis-function networks Neural Comput. 3 2 246 257
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 38
  • 41
    • 35348954934 scopus 로고    scopus 로고
    • Condition numbers and Ritz type methods in unconstrained optimization
    • T. Zolezzi 2007 Condition numbers and Ritz type methods in unconstrained optimization Control Cybern. 36 811 822
    • (2007) Control Cybern. , vol.36 , pp. 811-822
    • Zolezzi, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.