메뉴 건너뛰기




Volumn 57, Issue 1, 2011, Pages 549-558

On a variational norm tailored to variable-basis approximation schemes

Author keywords

Approximation schemes; convex hulls; infinite dimensionaloptimization; L1 norm; upper and lower bounds; variation with respect to a set

Indexed keywords

APPROXIMATION SCHEME; CONVEX HULL; INFINITE-DIMENSIONALOPTIMIZATION; L1-NORM; UPPER AND LOWER BOUNDS; VARIATION WITH RESPECT TO A SET;

EID: 78650896759     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2010.2090198     Document Type: Article
Times cited : (25)

References (49)
  • 2
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst-case errors in linear and neural network approximation
    • V. Kurková and M. Sanguineti, "Comparison of worst-case errors in linear and neural network approximation," IEEE Trans. Inf. Theory, vol. 48, pp. 264-275, 2002.
    • (2002) IEEE Trans. Inf. Theory , vol.48 , pp. 264-275
    • Kurková, V.1    Sanguineti, M.2
  • 3
    • 0002678121 scopus 로고
    • Neural net approximation
    • K. S. Narendra, Ed. Yale Univ. Press
    • A. R. Barron, "Neural net approximation," in Proc. 7th Yale Workshop on Adapt. Learn. Syst., K. S. Narendra, Ed., 1992, pp. 69-72, Yale Univ. Press.
    • (1992) Proc. 7th Yale Workshop on Adapt. Learn. Syst. , pp. 69-72
    • Barron, A.R.1
  • 5
    • 0001220724 scopus 로고
    • Compression of wavelet decompositions
    • R. A. DeVore, B. Jawerth, and V. Popov, "Compression of wavelet decompositions," Amer. J. Math., vol. 114, pp. 737-785, 1992.
    • (1992) Amer. J. Math. , vol.114 , pp. 737-785
    • Devore, R.A.1    Jawerth, B.2    Popov, V.3
  • 6
    • 21844508292 scopus 로고
    • Nonlinear approximation by trigonometric sums
    • R. A. DeVore and V. N. Temlyakov, "Nonlinear approximation by trigonometric sums," The J. Fourier Anal. Appl., vol. 2, pp. 29-48, 1995.
    • (1995) The J. Fourier Anal. Appl. , vol.2 , pp. 29-48
    • Devore, R.A.1    Temlyakov, V.N.2
  • 8
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inf. Theory, vol. 39, pp. 930-945, 1993.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 9
    • 0003787146 scopus 로고
    • Princeton NJ: Princeton Univ. Press
    • R. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ. Press, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 11
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • R. Zoppoli, M. Sanguineti, and T. Parisini, "Approximating networks and extended Ritz method for the solution of functional optimization problems," J. Optimiz. Theory Appl., vol. 112, pp. 403-439, 2002.
    • (2002) J. Optimiz. Theory Appl. , vol.112 , pp. 403-439
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 12
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • T. J. Sejnowski and C. Rosenberg, "Parallel networks that learn to pronounce English text," Complex Syst., vol. 1, pp. 145-168, 1987.
    • (1987) Complex Syst. , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.2
  • 13
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • V. Kurková and M. Sanguineti, "Error estimates for approximate optimization by the extended Ritz method," SIAM J. Optimiz., vol. 15, pp. 261-287, 2005.
    • (2005) SIAM J. Optimiz. , vol.15 , pp. 261-287
    • Kurková, V.1    Sanguineti, M.2
  • 15
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • V. Kurková, P. C. Kainen, and V. Kreinovich, "Estimates of the number of hidden units and variation with respect to half-spaces," Neural Netw., vol. 10, pp. 1061-1068, 1997.
    • (1997) Neural Netw. , vol.10 , pp. 1061-1068
    • Kurková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 16
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued boolean functions by neural networks
    • V. Kurková, P. Savický, and K. Hlaváč ková, "Representations and rates of approximation of real-valued boolean functions by neural networks," Neural Netw., vol. 11, pp. 651-659, 1998.
    • (1998) Neural Netw. , vol.11 , pp. 651-659
    • Kurková, V.1    Savický, P.2    Hlaváčková, K.3
  • 17
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • DOI 10.1109/18.945285, PII S0018944801054554
    • V. Kurková and M. Sanguineti, "Bounds on rates of variable-basis and neural-network approximation," IEEE Trans. Inf. Theory, vol. 47, pp. 2659-2665, 2001. (Pubitemid 32949922)
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.6 , pp. 2659-2665
    • Kurkova, V.1    Sanguineti, M.2
  • 18
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • V. Kürková and M. Sanguineti, "Learning with generalization capability by kernel methods of bounded complexity," J. Complex., vol. 21, pp. 350-367, 2005.
    • (2005) J. Complex. , vol.21 , pp. 350-367
    • Kurková, V.1    Sanguineti, M.2
  • 19
    • 61349203972 scopus 로고    scopus 로고
    • Approximate minimization of the regularized expected error over kernel models
    • V. Kürková and M. Sanguineti, "Approximate minimization of the regularized expected error over kernel models," Math. Operat. Res., vol. 33, pp. 747-756, 2008.
    • (2008) Math. Operat. Res. , vol.33 , pp. 747-756
    • Kürková, V.1    Sanguineti, M.2
  • 20
    • 2542498732 scopus 로고    scopus 로고
    • Minimization of error functionals over variable-basis functions
    • P. C. Kainen, V. Kürková, and M. Sanguineti, "Minimization of error functionals over variable-basis functions," SIAM J. Optimiz., vol. 14, pp. 732-742, 2003.
    • (2003) SIAM J. Optimiz. , vol.14 , pp. 732-742
    • Kainen, P.C.1    Kürková, V.2    Sanguineti, M.3
  • 21
    • 0033684677 scopus 로고    scopus 로고
    • On dimension-independent approximation by neural networks and linear approximators
    • S. Giulini and M. Sanguineti, "On dimension-independent approximation by neural networks and linear approximators," in Proc. Int. Joint Conf. Neural Netw., 2000, pp. I283-I288.
    • (2000) Proc. Int. Joint Conf. Neural Netw.
    • Giulini, S.1    Sanguineti, M.2
  • 22
    • 58149492837 scopus 로고    scopus 로고
    • Approximation schemes for functional optimization problems
    • S. Giulini and M. Sanguineti, "Approximation schemes for functional optimization problems," J. Optimiz. Theory Appl., vol. 140, pp. 33-54, 2009.
    • (2009) J. Optimiz. Theory Appl. , vol.140 , pp. 33-54
    • Giulini, S.1    Sanguineti, M.2
  • 23
    • 57349097663 scopus 로고    scopus 로고
    • Geometric upper bounds on rates of variable-basis approximation
    • V. Kürková and M. Sanguineti, "Geometric upper bounds on rates of variable-basis approximation," IEEE Trans. Inf. Theory, vol. 54, pp. 5681-5688, 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 5681-5688
    • Kürková, V.1    Sanguineti, M.2
  • 24
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training," Ann. Statist., vol. 20, pp. 608-613, 1992.
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 25
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification and function approximation
    • L. Breiman, "Hinging hyperplanes for regression, classification and function approximation," IEEE Trans. Inf. Theory, vol. 39, pp. 999-1013, 1993.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 999-1013
    • Breiman, L.1
  • 26
    • 70350222271 scopus 로고    scopus 로고
    • An integral upper bound for neural network approximation
    • P. C. Kainen and V. Kürková, "An integral upper bound for neural network approximation," Neural Computat., vol. 21, pp. 2970-2989, 2009.
    • (2009) Neural Computat. , vol.21 , pp. 2970-2989
    • Kainen, P.C.1    Kürková, V.2
  • 27
    • 70350217842 scopus 로고    scopus 로고
    • Model complexity of neural networks and integral transforms
    • M. Polycarpou, C. Panayiotou, C. Alippi, and G. Ellinas, Eds., Berlin, Heidelberg Springer
    • V. Kürková, "Model complexity of neural networks and integral transforms," in Lecture Notes in Comput. Sci. (Proc. ICANN 2009),M. Polycarpou, C. Panayiotou, C. Alippi, and G. Ellinas, Eds., Berlin, Heidelberg, 2009, vol. 5768 , pp. 708-718, Springer.
    • (2009) Lecture Notes in Comput. Sci. (Proc. ICANN 2009) , vol.5768 , pp. 708-718
    • Kürková, V.1
  • 28
    • 77949570561 scopus 로고    scopus 로고
    • Estimates of variation with respect to a set and applications to optimization problems
    • G. Gnecco and M. Sanguineti, "Estimates of variation with respect to a set and applications to optimization problems," J. Optimiz. Theory Appl., vol. 145, pp. 53-75, 2010.
    • (2010) J. Optimiz. Theory Appl. , vol.145 , pp. 53-75
    • Gnecco, G.1    Sanguineti, M.2
  • 30
    • 0008977715 scopus 로고
    • Remarques sur un résultat non publié de B. Maurey
    • École Polytechnique, Centre de Mathématiques, Palaiseau, France
    • G. Pisier, "Remarques sur un résultat non publié de B. Maurey," Séminaire d'Analyse Fonctionnelle 1980-81, vol. I, no. 12, 1981, École Polytechnique, Centre de Mathématiques, Palaiseau, France.
    • (1981) Séminaire d'Analyse Fonctionnelle 1980-81 , vol.1 , Issue.12
    • Pisier, G.1
  • 34
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, "Theory of reproducing kernels," Trans. AMS, vol. 68, pp. 337-404, 1950.
    • (1950) Trans. AMS , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 38
    • 0000461110 scopus 로고
    • An approach to time series analysis
    • E. Parzen, "An approach to time series analysis," Ann. Math. Statist., vol. 32, pp. 951-989, 1961.
    • (1961) Ann. Math. Statist. , vol.32 , pp. 951-989
    • Parzen, E.1
  • 39
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, pp. 1-25, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 1-25
    • Cortes, C.1    Vapnik, V.2
  • 40
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol. 78, pp. 1481-1497, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 41
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, "On the mathematical foundations of learning," Bull. AMS, vol. 39, pp. 1-49, 2001.
    • (2001) Bull. AMS , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 43
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their approximations
    • S. Smale and D. X. Zhou, "Learning theory estimates via integral operators and their approximations," Construct. Approx., vol. 26, pp. 153-172, 2007.
    • (2007) Construct. Approx. , vol.26 , pp. 153-172
    • Smale, S.1    Zhou, D.X.2
  • 44
    • 58849109485 scopus 로고    scopus 로고
    • Accuracy of suboptimal solutions to kernel principal component analysis
    • G. Gnecco and M. Sanguineti, "Accuracy of suboptimal solutions to kernel principal component analysis," Computat. Optimiz. Appl., vol. 42, pp. 265-287, 2009.
    • (2009) Computat. Optimiz. Appl. , vol.42 , pp. 265-287
    • Gnecco, G.1    Sanguineti, M.2
  • 45
    • 58149463469 scopus 로고    scopus 로고
    • The weight-decay technique in learning from data: An optimization point of view
    • G. Gnecco and M. Sanguineti, "The weight-decay technique in learning from data: An optimization point of view," Computat. Manage. Sci., vol. 6, pp. 53-79, 2009.
    • (2009) Computat. Manage. Sci. , vol.6 , pp. 53-79
    • Gnecco, G.1    Sanguineti, M.2
  • 46
    • 70350231420 scopus 로고    scopus 로고
    • Regularization and suboptimal solutions in learning from data
    • M. Bianchini, M. Maggini, and F. Scarselli, Eds. New York: Springer
    • G. Gnecco and M. Sanguineti, "Regularization and suboptimal solutions in learning from data," in Innovations in Neural Information Paradigms and Applications, M. Bianchini, M. Maggini, and F. Scarselli, Eds. New York: Springer, 2009, pp. 113-154.
    • (2009) Innovations in Neural Information Paradigms and Applications , pp. 113-154
    • Gnecco, G.1    Sanguineti, M.2
  • 47
    • 77952978333 scopus 로고    scopus 로고
    • Regularization techniques and suboptimal solutions to optimization problems in learning from data
    • G. Gnecco and M. Sanguineti, "Regularization techniques and suboptimal solutions to optimization problems in learning from data," Neural Computat., vol. 22, pp. 793-829, 2010.
    • (2010) Neural Computat. , vol.22 , pp. 793-829
    • Gnecco, G.1    Sanguineti, M.2
  • 48
    • 77955085794 scopus 로고    scopus 로고
    • Error bounds for suboptimal solutions to kernel principal component analysis
    • G. Gnecco and M. Sanguineti, "Error bounds for suboptimal solutions to kernel principal component analysis," Optimiz. Lett., vol. 4, pp. 197-210, 2010.
    • (2010) Optimiz. Lett. , vol.4 , pp. 197-210
    • Gnecco, G.1    Sanguineti, M.2
  • 49
    • 18144431335 scopus 로고    scopus 로고
    • Mercer theorem for RKHS on noncompact sets
    • H. Sun, "Mercer theorem for RKHS on noncompact sets," J. Complex., vol. 21, pp. 337-349, 2005.
    • (2005) J. Complex. , vol.21 , pp. 337-349
    • Sun, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.