메뉴 건너뛰기




Volumn 20, Issue 1, 2008, Pages 252-270

Minimization of error functionals over perceptron networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL RHYTHM; COMPUTER SIMULATION; LOGIC; NORMAL DISTRIBUTION; PHYSIOLOGY;

EID: 37748999976     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.20.1.252     Document Type: Article
Times cited : (19)

References (35)
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on Information Theory, 39, 930-945.
    • (1993) IEEE Trans. on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 5
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., & Smale, S. (2002). On the mathematical foundations of learning. Bulletin of AMS, 39, 1-49.
    • (2002) Bulletin of AMS , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 6
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control and Signals Systems, 2, 303-314.
    • (1989) Mathematics of Control and Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 0025799121 scopus 로고
    • Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory
    • Ito, Y. (1991). Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Networks, 4, 385-394.
    • (1991) Neural Networks , vol.4 , pp. 385-394
    • Ito, Y.1
  • 10
    • 0001929506 scopus 로고
    • Finite mapping by neural networks and truth functions
    • Ito, Y. (1992). Finite mapping by neural networks and truth functions. Math. Scientist, 17, 69-77.
    • (1992) Math. Scientist , vol.17 , pp. 69-77
    • Ito, Y.1
  • 11
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics, 20, 608-613.
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 12
    • 0008185462 scopus 로고
    • Quasiorthogonal dimension of Euclidean spaces
    • Kainen, P. C., & Kůrková, V. (1993). Quasiorthogonal dimension of Euclidean spaces. Applied Math. Letters, 6, 7-10.
    • (1993) Applied Math. Letters , vol.6 , pp. 7-10
    • Kainen, P.C.1    Kůrková, V.2
  • 13
    • 0344993943 scopus 로고    scopus 로고
    • Approximation by neural networks is not continuous
    • Kainen, P. C., Kůrková, V., & Vogt, A. (1999). Approximation by neural networks is not continuous. Neurocomputing, 29, 47-56.
    • (1999) Neurocomputing , vol.29 , pp. 47-56
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 14
    • 0008241587 scopus 로고    scopus 로고
    • Geometry and topology of continuous best and near best approximations
    • Kainen, P. C., Kůrková, V., & Vogt, A. (2000a). Geometry and topology of continuous best and near best approximations. Journal of Approximation Theory, 105, 252-262.
    • (2000) Journal of Approximation Theory , vol.105 , pp. 252-262
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 15
    • 18744387645 scopus 로고    scopus 로고
    • An integral formula for Heaviside neural networks
    • Kainen, P. C., Kůrková, V., & Vogt, A. (2000b). An integral formula for Heaviside neural networks. Neural Network World, 10, 313-320.
    • (2000) Neural Network World , vol.10 , pp. 313-320
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 16
    • 0038009873 scopus 로고    scopus 로고
    • Best approximation by linear combinations of characteristic functions of half-spaces
    • Kainen, P. C., Kůrková, V., & Vogt, A. (2003). Best approximation by linear combinations of characteristic functions of half-spaces. Journal of Approximation Theory, 122, 151-159.
    • (2003) Journal of Approximation Theory , vol.122 , pp. 151-159
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 17
    • 37749004818 scopus 로고    scopus 로고
    • Integral combinations of Heavisides. Submitted
    • ICS-966. Available online at
    • Kainen, P. C., Kůrková, V., & Vogt, A. (2006). Integral combinations of Heavisides. Submitted, Research report ICS-966. Available online at http://www.es.cas.cz/research/publications.shtml.
    • (2006) Research report
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 18
    • 34447641642 scopus 로고    scopus 로고
    • A Sobolev-type upper bound for rates of approximation by linear combinations of plane waves
    • Kainen, P. C., Kůrková, V., & Vogt, A. (2007). A Sobolev-type upper bound for rates of approximation by linear combinations of plane waves. Journal of Approximation Theory, 147, 1-10.
    • (2007) Journal of Approximation Theory , vol.147 , pp. 1-10
    • Kainen, P.C.1    Kůrková, V.2    Vogt, A.3
  • 20
    • 4043167595 scopus 로고    scopus 로고
    • High-dimensional approximation and optimization by neural networks
    • J. Suykens, G. Horvath, S. Basu, C. Micchelli, & J. Vandewalle Eds, Amsterdam: IOS Press
    • Kůrková, V. (2003). High-dimensional approximation and optimization by neural networks. In J. Suykens, G. Horvath, S. Basu, C. Micchelli, & J. Vandewalle (Eds.), Advances in learning theory: Methods, models and applications (pp. 69-88). Amsterdam: IOS Press.
    • (2003) Advances in learning theory: Methods, models and applications , pp. 69-88
    • Kůrková, V.1
  • 21
    • 37749014010 scopus 로고    scopus 로고
    • Minimization of empirical error functional over perceptron networks
    • B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, & N. C. Steele Eds, Berlin: Springer-Verlag
    • Kůrková, V. (2005). Minimization of empirical error functional over perceptron networks. In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, & N. C. Steele (Eds.), Adaptive and natural computing algorithms (pp. 46-49). Berlin: Springer-Verlag.
    • (2005) Adaptive and natural computing algorithms , pp. 46-49
    • Kůrková, V.1
  • 22
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • Kůrková, V., Kainen, P. C., & Kreinovich, V. (1997). Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks, 10, 1061-1068.
    • (1997) Neural Networks , vol.10 , pp. 1061-1068
    • Kůrková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 23
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • Kůrková, V., Savický, P., & Hlaváč ková, K. (1998). Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Networks, 11, 651-659.
    • (1998) Neural Networks , vol.11 , pp. 651-659
    • Kůrková, V.1    Savický, P.2    Hlaváč ková, K.3
  • 24
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation can approximate any function
    • Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with a non-polynomial activation can approximate any function. Neural Networks, 6, 861-867.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 25
    • 0030119952 scopus 로고    scopus 로고
    • Random approximants and neural networks
    • Makovoz, Y. (1996). Random approximants and neural networks. Journal of Approximation Theory, 85, 98-109.
    • (1996) Journal of Approximation Theory , vol.85 , pp. 98-109
    • Makovoz, Y.1
  • 26
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz, Y. (1998). Uniform approximation by neural networks. Journal of Approximation Theory, 95, 215-228.
    • (1998) Journal of Approximation Theory , vol.95 , pp. 215-228
    • Makovoz, Y.1
  • 27
    • 0000358945 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Mhaskar, H. N., & Micchelli, C. A. (1992). Approximation by superposition of a sigmoidal function. Advances in Applied Mathematics, 13, 350-373.
    • (1992) Advances in Applied Mathematics , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 28
    • 37449032880 scopus 로고    scopus 로고
    • Approximation theory of the MPL model in neural networks
    • Pinkus, A. (1998). Approximation theory of the MPL model in neural networks. Acta Numerica, 8, 277-283.
    • (1998) Acta Numerica , vol.8 , pp. 277-283
    • Pinkus, A.1
  • 29
    • 0008977715 scopus 로고
    • Remarques sur un résultat non publié de B. Maurey
    • Palaiseau, France: Ecole Polytechnique, Centre de Mathématiques
    • Pisier, G. (1981). Remarques sur un résultat non publié de B. Maurey. In Séminaire d'Analyse Fonctionnelle 1980-81. Palaiseau, France: Ecole Polytechnique, Centre de Mathématiques.
    • (1981) Séminaire d'Analyse Fonctionnelle 1980-81
    • Pisier, G.1
  • 30
    • 37749041414 scopus 로고
    • On the bent Boolean functions that are symmetric
    • Savický, P. (1994). On the bent Boolean functions that are symmetric. European Journal of Combinatorics, 15, 145-168.
    • (1994) European Journal of Combinatorics , vol.15 , pp. 145-168
    • Savický, P.1
  • 35
    • 0004146423 scopus 로고
    • Backpropagation: Basics and new developments
    • M. Arbib Ed, Cambridge, MA: MIT Press
    • Werbos, P. J. (1985). Backpropagation: Basics and new developments. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 134-139). Cambridge, MA: MIT Press.
    • (1985) The handbook of brain theory and neural networks , pp. 134-139
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.