메뉴 건너뛰기




Volumn 23, Issue 3-4, 2013, Pages 1019-1034

Fast neural network learning algorithms for medical applications

Author keywords

Conjugate gradient algorithms; Levenberg Marquardt (LM); Multilayer perceptron (MLP); Optimum topology; Quasi Newton algorithms

Indexed keywords

CONJUGATE GRADIENT ALGORITHMS; LEVENBERG-MARQUARDT; MULTI LAYER PERCEPTRON; OPTIMUM TOPOLOGIES; QUASI-NEWTON ALGORITHM;

EID: 84884590134     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1026-y     Document Type: Article
Times cited : (73)

References (140)
  • 2
    • 80051787563 scopus 로고    scopus 로고
    • Determination of dialysis dose: a clinical comparison of methods
    • Ahrenholz P, Taborsky P, Bohling M et al (2011) Determination of dialysis dose: a clinical comparison of methods. Blood Purif 32(4): 271-277.
    • (2011) Blood Purif , vol.32 , Issue.4 , pp. 271-277
    • Ahrenholz, P.1    Taborsky, P.2    Bohling, M.3
  • 3
    • 0035721779 scopus 로고    scopus 로고
    • Artificial intelligence: a new approach for prescription and monitoring of hemodialysis therapy
    • Akl AI, Sobh MA, Enab YM, Tattersall J (2001) Artificial intelligence: a new approach for prescription and monitoring of hemodialysis therapy. Am J Kidney Dis 38(6): 1277-1283.
    • (2001) Am J Kidney Dis , vol.38 , Issue.6 , pp. 1277-1283
    • Akl, A.I.1    Sobh, M.A.2    Enab, Y.M.3    Tattersall, J.4
  • 5
    • 80052612630 scopus 로고    scopus 로고
    • Artificial neural network for prediction of equilibrated dialysis dose without intradialytic sample
    • Azar AT, Wahba KM (2011) Artificial neural network for prediction of equilibrated dialysis dose without intradialytic sample. Saudi J Kidney Dis Transpl 22(4): 705-711.
    • (2011) Saudi J Kidney Dis Transpl , vol.22 , Issue.4 , pp. 705-711
    • Azar, A.T.1    Wahba, K.M.2
  • 7
    • 84867179597 scopus 로고    scopus 로고
    • Estimation of accurate and new method for hemodialysis dose calculation
    • Azar AT (2008) Estimation of accurate and new method for hemodialysis dose calculation. Clin Med Insights Urol Issue 1: 15-21.
    • (2008) Clin Med Insights Urol , Issue.1 , pp. 15-21
    • Azar, A.T.1
  • 8
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoid function
    • Barron AR (1993) Universal approximation bounds for superpositions of a sigmoid function. IEEE Trans Inf Theory 39(3): 930-945.
    • (1993) IEEE Trans Inf Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 9
    • 85162654781 scopus 로고
    • Predictive ability of regression models: part II. Selection of the best predictive PLS model
    • Baroni M, Clementi S, Cruciani G, Costantino G, Rignanelli D, Oberrauch E (1992) Predictive ability of regression models: part II. Selection of the best predictive PLS model. J Chemom 6(6): 347-356.
    • (1992) J Chemom , vol.6 , Issue.6 , pp. 347-356
    • Baroni, M.1    Clementi, S.2    Cruciani, G.3    Costantino, G.4    Rignanelli, D.5    Oberrauch, E.6
  • 10
    • 0023706923 scopus 로고
    • Direct calculation of Kt/V: a simplified approach to monitoring of haemodialysis
    • Barth RH (1988) Direct calculation of Kt/V: a simplified approach to monitoring of haemodialysis. Nephron 50(3): 191-195.
    • (1988) Nephron , vol.50 , Issue.3 , pp. 191-195
    • Barth, R.H.1
  • 11
    • 78049417236 scopus 로고    scopus 로고
    • A new index of hemodialysis adequacy: clearance × dialysis time/bioelectrical resistance
    • Basile C, Vernaglione L, Lomonte C et al (2010) A new index of hemodialysis adequacy: clearance × dialysis time/bioelectrical resistance. J Nephrol 23(5): 575-586.
    • (2010) J Nephrol , vol.23 , Issue.5 , pp. 575-586
    • Basile, C.1    Vernaglione, L.2    Lomonte, C.3
  • 12
    • 77950213370 scopus 로고    scopus 로고
    • Comparison of alternative methods for scaling dialysis dose
    • Basile C, Vernaglione L, Lomonte C et al (2010) Comparison of alternative methods for scaling dialysis dose. Nephrol Dial Transplant 25(4): 1232-1239.
    • (2010) Nephrol Dial Transplant , vol.25 , Issue.4 , pp. 1232-1239
    • Basile, C.1    Vernaglione, L.2    Lomonte, C.3
  • 13
    • 0025217797 scopus 로고
    • Percent reduction in blood urea concentration during dialysis estimates Kt/V in a simple and accurate way
    • Basile C, Casino F, Lopez T (1990) Percent reduction in blood urea concentration during dialysis estimates Kt/V in a simple and accurate way. Am J Kidney Dis 15(1): 40-45.
    • (1990) Am J Kidney Dis , vol.15 , Issue.1 , pp. 40-45
    • Basile, C.1    Casino, F.2    Lopez, T.3
  • 15
    • 0001024110 scopus 로고
    • First and second order methods for learning: between steepest descent and Newton's method
    • Battiti R (1992) First and second order methods for learning: between steepest descent and Newton's method. Neural Comput 4(2): 141-166.
    • (1992) Neural Comput , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 17
    • 0010515793 scopus 로고
    • A derivation of conjugate gradients
    • F. A. Lootsma (Ed.), London: Academic Press
    • Beale EML (1972) A derivation of conjugate gradients. In: Lootsma FA (ed) Numerical methods for nonlinear optimization. Academic Press, London.
    • (1972) Numerical Methods for Nonlinear Optimization
    • Beale, E.M.L.1
  • 19
    • 84908219488 scopus 로고
    • Statistical methods for assessing agreement between two methods of clinical measurement
    • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8: 307-310.
    • (1986) Lancet , vol.8 , pp. 307-310
    • Bland, J.M.1    Altman, D.G.2
  • 21
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97(1-2): 245-271.
    • (1997) Artif Intell , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 23
    • 84864769753 scopus 로고    scopus 로고
    • Calculation of Kt/V in haemodialysis: a comparison between the formulas
    • Breitsameter G, Figueiredo AE, Kochhann DS (2012) Calculation of Kt/V in haemodialysis: a comparison between the formulas. J Bras Nefrol 34(1): 22-26.
    • (2012) J Bras Nefrol , vol.34 , Issue.1 , pp. 22-26
    • Breitsameter, G.1    Figueiredo, A.E.2    Kochhann, D.S.3
  • 24
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fougelman-Soulie (Ed.), Berlin: Springer
    • Bridle JS (1989) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Fougelman-Soulie F (ed) Neurocomputing: algorithms, architectures and applications. Springer, Berlin, pp 227-236.
    • (1989) Neurocomputing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 25
    • 0030899142 scopus 로고    scopus 로고
    • Estimation of parameters in a two-pool urea kinetic model for hemodialysis
    • Burgelman M, Vanholder R, Fostier H, Ringoir S (1997) Estimation of parameters in a two-pool urea kinetic model for hemodialysis. Med Eng Phys 19(1): 69-76.
    • (1997) Med Eng Phys , vol.19 , Issue.1 , pp. 69-76
    • Burgelman, M.1    Vanholder, R.2    Fostier, H.3    Ringoir, S.4
  • 28
    • 0028315994 scopus 로고
    • Urea index and other predictors of hemodialysis patient survival
    • Collins AJ, Ma JZ, Umen A, Keshaviah P (1994) Urea index and other predictors of hemodialysis patient survival. Am J Kidney Dis 23(2): 272-282.
    • (1994) Am J Kidney Dis , vol.23 , Issue.2 , pp. 272-282
    • Collins, A.J.1    Ma, J.Z.2    Umen, A.3    Keshaviah, P.4
  • 29
    • 0028885032 scopus 로고
    • Introduction to neural networks
    • Cross SS, Harrison RF, Kennedy RL (1995) Introduction to neural networks. Lancet 346(8982): 1075-1079.
    • (1995) Lancet , vol.346 , Issue.8982 , pp. 1075-1079
    • Cross, S.S.1    Harrison, R.F.2    Kennedy, R.L.3
  • 30
    • 84880572435 scopus 로고    scopus 로고
    • Improved equation for estimating single-pool Kt/V at higher dialysis frequencies
    • (in print). doi: 10. 1093/ndt/gfs115
    • Daugirdas JT, Leypoldt JK, Akonur A et al. (2012) Improved equation for estimating single-pool Kt/V at higher dialysis frequencies. Nephrol Dial Transplant (in print). doi: 10. 1093/ndt/gfs115.
    • (2012) Nephrol Dial Transplant
    • Daugirdas, J.T.1    Leypoldt, J.K.2    Akonur, A.3
  • 31
    • 80051816309 scopus 로고    scopus 로고
    • Is there a minimal amount of time a patient should be dialyzed regardless of measured KT/V?
    • Daugirdas JT (2011) Is there a minimal amount of time a patient should be dialyzed regardless of measured KT/V? Semin Dial 24(4): 423-425.
    • (2011) Semin Dial , vol.24 , Issue.4 , pp. 423-425
    • Daugirdas, J.T.1
  • 33
    • 77957291655 scopus 로고    scopus 로고
    • Can rescaling dose of dialysis to body surface area in the HEMO study explain the different responses to dose in women versus men?
    • Daugirdas JT, Greene T, Chertow GM, Depner TA (2010) Can rescaling dose of dialysis to body surface area in the HEMO study explain the different responses to dose in women versus men? Clin J Am Soc Nephrol 5(9): 1628-1636.
    • (2010) Clin J Am Soc Nephrol , vol.5 , Issue.9 , pp. 1628-1636
    • Daugirdas, J.T.1    Greene, T.2    Chertow, G.M.3    Depner, T.A.4
  • 34
    • 77949540662 scopus 로고    scopus 로고
    • Standard Kt/Vurea: a method of calculation that includes effects of fluid removal and residual kidney clearance
    • Daugirdas JT, Depner TA, Greene T et al (2010) Standard Kt/Vurea: a method of calculation that includes effects of fluid removal and residual kidney clearance. Kidney Int 77(7): 637-644.
    • (2010) Kidney Int , vol.77 , Issue.7 , pp. 637-644
    • Daugirdas, J.T.1    Depner, T.A.2    Greene, T.3
  • 35
    • 0024391339 scopus 로고
    • The post: pre dialysis plasma urea nitrogen ratio to estimate Kt/V and nPCR: validation
    • Daugirdas JT (1989) The post: pre dialysis plasma urea nitrogen ratio to estimate Kt/V and nPCR: validation. Int J Artif Organs 12(7): 420-427.
    • (1989) Int J Artif Organs , vol.12 , Issue.7 , pp. 420-427
    • Daugirdas, J.T.1
  • 36
    • 0027688501 scopus 로고
    • Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error
    • Daugirdas JT (1993) Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol 4(5): 1205-1213.
    • (1993) J Am Soc Nephrol , vol.4 , Issue.5 , pp. 1205-1213
    • Daugirdas, J.T.1
  • 37
    • 0029883945 scopus 로고    scopus 로고
    • Effect of access recirculation on the modeled urea distribution volume
    • Daugirdas JT, Schneditz D, Leehey DJ (1996) Effect of access recirculation on the modeled urea distribution volume. Am J Kidney Dis 27(4): 512-518.
    • (1996) Am J Kidney Dis , vol.27 , Issue.4 , pp. 512-518
    • Daugirdas, J.T.1    Schneditz, D.2    Leehey, D.J.3
  • 38
    • 0347994928 scopus 로고    scopus 로고
    • Factors that affect postdialysis rebound in serum urea concentration, including the rate of dialysis: results from the HEMO Study
    • Daugirdas JT, Greene T, Depner TA, Leypoldt J, Gotch F, Schulman G, Star R (2004) Factors that affect postdialysis rebound in serum urea concentration, including the rate of dialysis: results from the HEMO Study. J Am Soc Nephrol 15(1): 194-203.
    • (2004) J Am Soc Nephrol , vol.15 , Issue.1 , pp. 194-203
    • Daugirdas, J.T.1    Greene, T.2    Depner, T.A.3    Leypoldt, J.4    Gotch, F.5    Schulman, G.6    Star, R.7
  • 41
    • 0028211649 scopus 로고
    • Assessing adequacy of hemodialysis urea modeling
    • Depner TA (1994) Assessing adequacy of hemodialysis urea modeling. Kidney Int 45(5): 1522-1535.
    • (1994) Kidney Int , vol.45 , Issue.5 , pp. 1522-1535
    • Depner, T.A.1
  • 42
    • 0029655986 scopus 로고    scopus 로고
    • Quantifying hemodialysis
    • Depner TA (1996) Quantifying hemodialysis. Am J Nephrol 16(1): 17-28.
    • (1996) Am J Nephrol , vol.16 , Issue.1 , pp. 17-28
    • Depner, T.A.1
  • 43
    • 34748858811 scopus 로고    scopus 로고
    • History of dialysis quantitation
    • Depner TA (1999) History of dialysis quantitation. Semin Dial 12(1): S14-S19.
    • (1999) Semin Dial , vol.12 , Issue.1
    • Depner, T.A.1
  • 44
    • 23644447011 scopus 로고    scopus 로고
    • Hemodialysis adequacy: basic essentials and practical points for the nephrologist in training
    • Depner TA (2005) Hemodialysis adequacy: basic essentials and practical points for the nephrologist in training. Hemodial Int 9(3): 241-254.
    • (2005) Hemodial Int , vol.9 , Issue.3 , pp. 241-254
    • Depner, T.A.1
  • 46
    • 84755160784 scopus 로고    scopus 로고
    • First-principles modeling of fluid and solute exchange in the human during normal and hemodialysis conditions
    • Fernandez de Canete J, Del Saz Huang P (2010) First-principles modeling of fluid and solute exchange in the human during normal and hemodialysis conditions. Comput Biol Med 40(9): 740-750.
    • (2010) Comput Biol Med , vol.40 , Issue.9 , pp. 740-750
    • Fernandez de Canete, J.1    Del Saz Huang, P.2
  • 47
    • 0035107576 scopus 로고    scopus 로고
    • Using artificial intelligence to predict the equilibrated post-dialysis blood urea concentration
    • Fernandez EA, Valtuille R, Willshaw P, Perazzo CA (2001) Using artificial intelligence to predict the equilibrated post-dialysis blood urea concentration. Blood Purif 19(3): 271-285.
    • (2001) Blood Purif , vol.19 , Issue.3 , pp. 271-285
    • Fernandez, E.A.1    Valtuille, R.2    Willshaw, P.3    Perazzo, C.A.4
  • 48
    • 19244374706 scopus 로고    scopus 로고
    • Dialysate-side urea kinetics. Neural network predicts dialysis dose during dialysis
    • Fernandez EA, Valtuille R, Willshaw P, Perazzo CA (2003) Dialysate-side urea kinetics. Neural network predicts dialysis dose during dialysis. Med Biol Eng Comput 41(4): 392-396.
    • (2003) Med Biol Eng Comput , vol.41 , Issue.4 , pp. 392-396
    • Fernandez, E.A.1    Valtuille, R.2    Willshaw, P.3    Perazzo, C.A.4
  • 49
    • 24644470996 scopus 로고    scopus 로고
    • Comparison of different methods for hemodialysis evaluation by means of ROC curves: from artificial intelligence to current methods
    • Fernandez EA, Valtuille R, Presedo J, Willshaw P (2005) Comparison of different methods for hemodialysis evaluation by means of ROC curves: from artificial intelligence to current methods. Clin Nephrol 64(3): 205-213.
    • (2005) Clin Nephrol , vol.64 , Issue.3 , pp. 205-213
    • Fernandez, E.A.1    Valtuille, R.2    Presedo, J.3    Willshaw, P.4
  • 50
    • 20544458070 scopus 로고    scopus 로고
    • Comparison of standard and artificial neural network estimators of hemodialysis adequacy
    • Fernandez EA, Valtuille R, Rodriguez Presedo J, Willshaw P (2005) Comparison of standard and artificial neural network estimators of hemodialysis adequacy. Artif Organs 29(2): 159-165.
    • (2005) Artif Organs , vol.29 , Issue.2 , pp. 159-165
    • Fernandez, E.A.1    Valtuille, R.2    Rodriguez Presedo, J.3    Willshaw, P.4
  • 51
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7(2): 149-154.
    • (1964) Comput J , vol.7 , Issue.2 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 53
    • 0033254829 scopus 로고    scopus 로고
    • A neural network approach to the diagnosis of early acute allograft rejection
    • Furness PN, Kazi J, Levesley J, Taub N, Nicholson M (1999) A neural network approach to the diagnosis of early acute allograft rejection. Transplant Proc 31(8): 3151.
    • (1999) Transplant Proc , vol.31 , Issue.8 , pp. 3151
    • Furness, P.N.1    Kazi, J.2    Levesley, J.3    Taub, N.4    Nicholson, M.5
  • 55
    • 16644388438 scopus 로고    scopus 로고
    • Does cystatin C improve the precision of Cockcroft and Gault's creatinine clearance estimation?
    • Gabutti L, Ferrari N, Mombelli G, Marone C (2004) Does cystatin C improve the precision of Cockcroft and Gault's creatinine clearance estimation? J Nephrol 17(5): 673-678.
    • (2004) J Nephrol , vol.17 , Issue.5 , pp. 673-678
    • Gabutti, L.1    Ferrari, N.2    Mombelli, G.3    Marone, C.4
  • 56
    • 3042806768 scopus 로고    scopus 로고
    • Usefulness of artificial neural networks to predict follow-up dietary protein intake in hemodialysis patients
    • Gabutti L, Burnier M, Mombelli G, Malé F, Pellegrini L, Marone C (2004) Usefulness of artificial neural networks to predict follow-up dietary protein intake in hemodialysis patients. Kidney Int 66(1): 399-407.
    • (2004) Kidney Int , vol.66 , Issue.1 , pp. 399-407
    • Gabutti, L.1    Burnier, M.2    Mombelli, G.3    Malé, F.4    Pellegrini, L.5    Marone, C.6
  • 57
    • 2442490848 scopus 로고    scopus 로고
    • Artificial neural networks improve the prediction of Kt/V, follow-up dietary protein intake and hypotension risk in haemodialysis patients
    • Gabutti L, Vadilonga D, Mombelli G, Burnier M, Marone C (2004) Artificial neural networks improve the prediction of Kt/V, follow-up dietary protein intake and hypotension risk in haemodialysis patients. Nephrol Dial Transplant 19(5): 1204-1211.
    • (2004) Nephrol Dial Transplant , vol.19 , Issue.5 , pp. 1204-1211
    • Gabutti, L.1    Vadilonga, D.2    Mombelli, G.3    Burnier, M.4    Marone, C.5
  • 58
    • 28244468126 scopus 로고    scopus 로고
    • Predicting intradialytic hypotension from experience, statistical models and artificial neural networks
    • Gabutti L, Machacek M, Marone C, Ferrari P (2005) Predicting intradialytic hypotension from experience, statistical models and artificial neural networks. J Nephrol 18(4): 409-416.
    • (2005) J Nephrol , vol.18 , Issue.4 , pp. 409-416
    • Gabutti, L.1    Machacek, M.2    Marone, C.3    Ferrari, P.4
  • 59
    • 0031052571 scopus 로고    scopus 로고
    • Urea rebound and delivered Kt/V determination with a continuous urea sensor
    • Garred LJ, Canaud B, Bosc JY, Tetta C (1997) Urea rebound and delivered Kt/V determination with a continuous urea sensor. Nephrol Dial Transplant 12(3): 535-542.
    • (1997) Nephrol Dial Transplant , vol.12 , Issue.3 , pp. 535-542
    • Garred, L.J.1    Canaud, B.2    Bosc, J.Y.3    Tetta, C.4
  • 60
    • 0031983412 scopus 로고    scopus 로고
    • An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists
    • Geddes CC, Fox JG, Allison ME, Boulton-Jones JM, Simpson K (1998) An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists. Nephrol Dial Transplant 13(1): 67-71.
    • (1998) Nephrol Dial Transplant , vol.13 , Issue.1 , pp. 67-71
    • Geddes, C.C.1    Fox, J.G.2    Allison, M.E.3    Boulton-Jones, J.M.4    Simpson, K.5
  • 62
    • 0038518206 scopus 로고    scopus 로고
    • Prediction of single-pool Kt/v based on clinical and hemodialysis variables using multilinear regression, tree-based modeling, and artificial neural networks
    • Goldfarb-Rumyantzev A, Schwenk MH, Liu S, Charytan C, Spinowitz BS (2003) Prediction of single-pool Kt/v based on clinical and hemodialysis variables using multilinear regression, tree-based modeling, and artificial neural networks. Artif Organs 27(6): 544-554.
    • (2003) Artif Organs , vol.27 , Issue.6 , pp. 544-554
    • Goldfarb-Rumyantzev, A.1    Schwenk, M.H.2    Liu, S.3    Charytan, C.4    Spinowitz, B.S.5
  • 63
    • 0002473177 scopus 로고
    • Kinetic modeling in hemodialysis
    • 2nd edn., A. R. Nissenson, R. N. Fine, and D. E. Gentile (Eds.), Norwalk: Appleton & Lange
    • Gotch FA (1990) Kinetic modeling in hemodialysis. In: Nissenson AR, Fine RN, Gentile DE (eds) Clinical dialysis, 2nd edn. Appleton & Lange, Norwalk, pp 118-146.
    • (1990) Clinical Dialysis , pp. 118-146
    • Gotch, F.A.1
  • 64
    • 0035403985 scopus 로고    scopus 로고
    • Evolution of the single-pool urea kinetic model
    • Gotch FA (2001) Evolution of the single-pool urea kinetic model. Semin Dial 14(4): 252-256.
    • (2001) Semin Dial , vol.14 , Issue.4 , pp. 252-256
    • Gotch, F.A.1
  • 65
    • 0021783946 scopus 로고
    • A mechanistic analysis of the national cooperative dialysis study
    • Gotch FA, Sargent JA (1985) A mechanistic analysis of the national cooperative dialysis study. Kidney Int 28(3): 526-538.
    • (1985) Kidney Int , vol.28 , Issue.3 , pp. 526-538
    • Gotch, F.A.1    Sargent, J.A.2
  • 66
    • 48549084029 scopus 로고    scopus 로고
    • Evaluation of hemodialysis adequacy using online Kt/V and single-pool variable-volume urea Kt/V
    • Grzegorzewska AE, Banachowicz W (2008) Evaluation of hemodialysis adequacy using online Kt/V and single-pool variable-volume urea Kt/V. Int Urol Nephrol 40(3): 771-778.
    • (2008) Int Urol Nephrol , vol.40 , Issue.3 , pp. 771-778
    • Grzegorzewska, A.E.1    Banachowicz, W.2
  • 67
    • 0031921044 scopus 로고    scopus 로고
    • Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis
    • Guh JY, Yang CY, Yang JM, Chen LM, Lai YH (1998) Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am J Kidney Dis 31(4): 638-646.
    • (1998) Am J Kidney Dis , vol.31 , Issue.4 , pp. 638-646
    • Guh, J.Y.1    Yang, C.Y.2    Yang, J.M.3    Chen, L.M.4    Lai, Y.H.5
  • 69
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Leran Res 3: 1157-1182.
    • (2003) J Mach Leran Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 70
    • 0028270271 scopus 로고
    • Effects of dose of dialysis on morbidity and mortality
    • Hakim RM, Breyer J, Ismail N, Schulman G (1994) Effects of dose of dialysis on morbidity and mortality. Am J Kidney Dis 23(5): 661-669.
    • (1994) Am J Kidney Dis , vol.23 , Issue.5 , pp. 661-669
    • Hakim, R.M.1    Breyer, J.2    Ismail, N.3    Schulman, G.4
  • 72
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6): 989-993.
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 73
    • 0004063090 scopus 로고    scopus 로고
    • 2nd edn., New Jersey: Prentice Hall
    • Haykin S (1999) Neural networks, 2nd edn. Prentice Hall, New Jersey.
    • (1999) Neural Networks
    • Haykin, S.1
  • 75
    • 54549106790 scopus 로고    scopus 로고
    • Affecting Kt/V: an analysis of staff interventions
    • Henning MR (2007) Affecting Kt/V: an analysis of staff interventions. Dial Transplant 36(11): 584-601.
    • (2007) Dial Transplant , vol.36 , Issue.11 , pp. 584-601
    • Henning, M.R.1
  • 77
    • 0031568673 scopus 로고    scopus 로고
    • Cardiac risk stratification in renal transplantation using a form of artificial intelligence
    • Heston TF, Norman DJ, Barry JM, Bennett WM, Wilson RA (1997) Cardiac risk stratification in renal transplantation using a form of artificial intelligence. Am J Cardiol 79(4): 415-417.
    • (1997) Am J Cardiol , vol.79 , Issue.4 , pp. 415-417
    • Heston, T.F.1    Norman, D.J.2    Barry, J.M.3    Bennett, W.M.4    Wilson, R.A.5
  • 80
    • 0032846622 scopus 로고    scopus 로고
    • Quest for post-dialysis urea rebound-equilibrated Kt/V with only intradialytic urea samples
    • Jean G, Charra B, Chazot C, Laurent G (1999) Quest for post-dialysis urea rebound-equilibrated Kt/V with only intradialytic urea samples. Kidney Int 56(3): 1149-1153.
    • (1999) Kidney Int , vol.56 , Issue.3 , pp. 1149-1153
    • Jean, G.1    Charra, B.2    Chazot, C.3    Laurent, G.4
  • 81
    • 0023378453 scopus 로고
    • Percent reduction in blood urea concentration during hemodialysis (PRU). A simple and accurate method to estimate Kt/V urea
    • Jindal KK, Manuel A, Goldstein MB (1987) Percent reduction in blood urea concentration during hemodialysis (PRU). A simple and accurate method to estimate Kt/V urea. ASAIO Trans 33(3): 286-288.
    • (1987) ASAIO Trans , vol.33 , Issue.3 , pp. 286-288
    • Jindal, K.K.1    Manuel, A.2    Goldstein, M.B.3
  • 82
    • 0000293377 scopus 로고
    • Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method
    • Johansson EM, Dowla FU, Goodman DM (1990) Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. Int J Neural Syst (IJNS) 2(4): 291-301.
    • (1990) Int J Neural Syst (IJNS) , vol.2 , Issue.4 , pp. 291-301
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 84
    • 0033255988 scopus 로고    scopus 로고
    • Interinstitutional variation in the performance of Baysian belief network for the diagnosis of acute renal graft rejection
    • Kazi JI, Furness PN, Nicholson M, Ahmed E, Akhter F, Naqvi A, Rizvi A (1999) Interinstitutional variation in the performance of Baysian belief network for the diagnosis of acute renal graft rejection. Transplant Proc 31(8): 3152.
    • (1999) Transplant Proc , vol.31 , Issue.8 , pp. 3152
    • Kazi, J.I.1    Furness, P.N.2    Nicholson, M.3    Ahmed, E.4    Akhter, F.5    Naqvi, A.6    Rizvi, A.7
  • 85
    • 0027480264 scopus 로고
    • Accuracy of Kt/V estimations in high-flux hemodiafiltration using percent reduction of urea: incorporation of urea rebound
    • Kerr PG, Argiles A, Canaud B, Flavier JL, Mion CM (1993) Accuracy of Kt/V estimations in high-flux hemodiafiltration using percent reduction of urea: incorporation of urea rebound. Nephrol Dial Transplant 8(2): 140-153.
    • (1993) Nephrol Dial Transplant , vol.8 , Issue.2 , pp. 140-153
    • Kerr, P.G.1    Argiles, A.2    Canaud, B.3    Flavier, J.L.4    Mion, C.M.5
  • 87
    • 0029038464 scopus 로고
    • Effects of different sampling methods for measurement of post dialysis blood urea nitrogen on urea kinetic modeling derived parameters in patients undergoing long-term hemodialysis
    • Lai YH, Guh JY, Chen HC, Tsai JH (1995) Effects of different sampling methods for measurement of post dialysis blood urea nitrogen on urea kinetic modeling derived parameters in patients undergoing long-term hemodialysis. ASAIO J 41(2): 211-215.
    • (1995) ASAIO J , vol.41 , Issue.2 , pp. 211-215
    • Lai, Y.H.1    Guh, J.Y.2    Chen, H.C.3    Tsai, J.H.4
  • 88
    • 0030040097 scopus 로고    scopus 로고
    • Postdialysis urea rebound: determinants and influence on dialysis delivery in chronic hemodialysis patients
    • Leblanc M, Charbonneau R, Lalumiere G, Cartier P, Deziel C (1996) Postdialysis urea rebound: determinants and influence on dialysis delivery in chronic hemodialysis patients. Am J Kidney Dis 27(2): 253-261.
    • (1996) Am J Kidney Dis , vol.27 , Issue.2 , pp. 253-261
    • Leblanc, M.1    Charbonneau, R.2    Lalumiere, G.3    Cartier, P.4    Deziel, C.5
  • 90
    • 0019783774 scopus 로고
    • Effect of the hemodialysis prescription on patient morbidity: report from the national cooperative dialysis study
    • Lowrie EG, Laird NM, Parker TF et al (1981) Effect of the hemodialysis prescription on patient morbidity: report from the national cooperative dialysis study. N Engl J Med 305(20): 1176-1181.
    • (1981) N Engl J Med , vol.305 , Issue.20 , pp. 1176-1181
    • Lowrie, E.G.1    Laird, N.M.2    Parker, T.F.3
  • 91
    • 0345147884 scopus 로고
    • Principles of prescribing dialysis therapy: implementing recommendations from the national co-operative dialysis study
    • Lowrie EG, Teehan BP (1983) Principles of prescribing dialysis therapy: implementing recommendations from the national co-operative dialysis study. Kidney Int 23(Suppl 13): S113-S122.
    • (1983) Kidney Int , vol.23 , Issue.SUPPL. 13
    • Lowrie, E.G.1    Teehan, B.P.2
  • 92
    • 0002375804 scopus 로고    scopus 로고
    • Primary associates or mortality among dialysis patients: trends and reassessment of Kt/V and urea reduction ratio as outcome-based measures of dialysis dose
    • Lowrie EG, Zhu X, Lew NL (1998) Primary associates or mortality among dialysis patients: trends and reassessment of Kt/V and urea reduction ratio as outcome-based measures of dialysis dose. Am J Kidney Dis 32(Suppl 4): S16-S31.
    • (1998) Am J Kidney Dis , vol.32 , Issue.SUPPL. 4
    • Lowrie, E.G.1    Zhu, X.2    Lew, N.L.3
  • 94
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2): 431-441.
    • (1963) SIAM J Appl Math , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.W.1
  • 96
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6: 525-533.
    • (1993) Neural Netw , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 97
    • 0344961870 scopus 로고    scopus 로고
    • Numeric sensitivity analysis applied to feedforward neural networks
    • Montano JJ, Palmer A (2003) Numeric sensitivity analysis applied to feedforward neural networks. Neural Comput Appl 2(2): 119-125.
    • (2003) Neural Comput Appl , vol.2 , Issue.2 , pp. 119-125
    • Montano, J.J.1    Palmer, A.2
  • 98
    • 0004255908 scopus 로고    scopus 로고
    • New York: The McGraw-Hill Companies, Inc
    • Mitchell T (1997) Machine learning. The McGraw-Hill Companies, Inc., New York.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 100
    • 0002210665 scopus 로고    scopus 로고
    • Clinical practice guidelines for hemodialysis adequacy
    • NKF-K/DOQI
    • NKF-K/DOQI (1997) Clinical practice guidelines for hemodialysis adequacy. Am J Kidney Dis 30(Suppl 2): S15-S57.
    • (1997) Am J Kidney Dis , vol.30 , Issue.SUPPL. 2
  • 101
    • 0035221369 scopus 로고    scopus 로고
    • Clinical practice guidelines for hemodialysis adequacy: update
    • NKF-K/DOQI
    • NKF-K/DOQI (2001) Clinical practice guidelines for hemodialysis adequacy: update. Am J Kidney Dis 37(Suppl 1): S7-S64.
    • (2001) Am J Kidney Dis , vol.37 , Issue.SUPPL. 1
  • 102
    • 33745285983 scopus 로고    scopus 로고
    • Clinical practice guidelines for hemodialysis adequacy, update, 2006. Hemodialysis adequacy 2006 work group
    • NKF-K/DOQI
    • NKF-K/DOQI (2006) Clinical practice guidelines for hemodialysis adequacy, update, 2006. Hemodialysis adequacy 2006 work group. Am J Kidney Dis 48(Suppl 1): S2-S90.
    • (2006) Am J Kidney Dis , vol.48 , Issue.SUPPL. 1
  • 103
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • Picard RR, Cook RD (1984) Cross-validation of regression models. J Am Stat Assoc 79(387): 575-583.
    • (1984) J Am Stat Assoc , vol.79 , Issue.387 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 104
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D (1996) Neural networks in clinical medicine. Med Decis Mak 16(4): 386-398.
    • (1996) Med Decis Mak , vol.16 , Issue.4 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 105
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Powell M (1977) Restart procedures for the conjugate gradient method. Math Program 12(1): 241-254.
    • (1977) Math Program , vol.12 , Issue.1 , pp. 241-254
    • Powell, M.1
  • 106
    • 1542285524 scopus 로고    scopus 로고
    • A novel mathematical method based on urea kinetic modeling for computing the dialysis dose
    • Prado M, Roa L, Palma A, Milán JA (2004) A novel mathematical method based on urea kinetic modeling for computing the dialysis dose. Comput Methods Programs Biomed 74(2): 109-128.
    • (2004) Comput Methods Programs Biomed , vol.74 , Issue.2 , pp. 109-128
    • Prado, M.1    Roa, L.2    Palma, A.3    Milán, J.A.4
  • 107
    • 0027579011 scopus 로고
    • Neural computation in medicine
    • Reggia JA (1993) Neural computation in medicine. Artif Intell Med 5(2): 143-157.
    • (1993) Artif Intell Med , vol.5 , Issue.2 , pp. 143-157
    • Reggia, J.A.1
  • 108
    • 0003896833 scopus 로고
    • Renal Physicians Association, Washington: Renal Physicians Association
    • Renal Physicians Association (1993) Clinical practice guideline: adequacy of hemodialyses. Renal Physicians Association, Washington.
    • (1993) Clinical Practice Guideline: Adequacy of Hemodialyses
  • 109
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA. doi: 10. 1109/ICNN. 1993. 298623
    • Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks, vol 1, pp 586-591, San Francisco, CA. doi: 10. 1109/ICNN. 1993. 298623.
    • (1993) In: Proceedings of the IEEE International Conference On Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 112
    • 0002818865 scopus 로고
    • Mathematic modeling of dialysis therapy
    • Sargent JA, Gotch FA (1980) Mathematic modeling of dialysis therapy. Kidney Int Suppl 10: S2-S10.
    • (1980) Kidney Int Suppl , vol.10
    • Sargent, J.A.1    Gotch, F.A.2
  • 113
    • 2342428041 scopus 로고
    • Control of dialysis by a single-pool urea model: the national cooperative dialysis study
    • Sargent J (1983) Control of dialysis by a single-pool urea model: the national cooperative dialysis study. Kidney Int 23(suppl 13): S19-S26.
    • (1983) Kidney Int , vol.23 , Issue.SUPPL. 13
    • Sargent, J.1
  • 115
    • 0347458328 scopus 로고    scopus 로고
    • Periodic posting to the Usenet newsgroup comp. ai. neural-nets
    • Sarle WS (1997) Neural network FAQ. Periodic posting to the Usenet newsgroup comp. ai. neural-nets. ftp://ftp. sas. com/pub/neural/FAQ. html.
    • (1997) Neural Network FAQ
    • Sarle, W.S.1
  • 117
    • 0035406414 scopus 로고    scopus 로고
    • Compartment effects in hemodialysis
    • Schneditz D, Daugirdas JT (2001) Compartment effects in hemodialysis. Semin Dial 14(4): 271-277.
    • (2001) Semin Dial , vol.14 , Issue.4 , pp. 271-277
    • Schneditz, D.1    Daugirdas, J.T.2
  • 118
    • 0027493328 scopus 로고
    • A regional blood circulation alternative to in-series two compartment urea kinetic modeling
    • Schneditz D, VanStone J, Daugirdas JT (1993) A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J 39(3): M573-M577.
    • (1993) ASAIO J , vol.39 , Issue.3
    • Schneditz, D.1    VanStone, J.2    Daugirdas, J.T.3
  • 119
    • 0028824244 scopus 로고
    • Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool urea kinetic models
    • Schneditz D, Fariyike B, Osheroff R, Levin NW (1995) Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool urea kinetic models. J Am Soc Nephrol 6(5): 1360-1370.
    • (1995) J Am Soc Nephrol , vol.6 , Issue.5 , pp. 1360-1370
    • Schneditz, D.1    Fariyike, B.2    Osheroff, R.3    Levin, N.W.4
  • 120
    • 0033120319 scopus 로고    scopus 로고
    • Predicting cytomegalovirus disease after renal transplantation: an artificial neural network approach
    • Sheppard D, McPhee D, Darke C, Shrethra B, Moore R, Jurewitz A, Gray A (1999) Predicting cytomegalovirus disease after renal transplantation: an artificial neural network approach. Int J Med Inform 54(1): 55-76.
    • (1999) Int J Med Inform , vol.54 , Issue.1 , pp. 55-76
    • Sheppard, D.1    McPhee, D.2    Darke, C.3    Shrethra, B.4    Moore, R.5    Jurewitz, A.6    Gray, A.7
  • 122
    • 0031859990 scopus 로고    scopus 로고
    • Prediction of early graft function in renal transplantation using a computer neural network
    • Shoskes DA, Ty R, Barba L, Sender M (1998) Prediction of early graft function in renal transplantation using a computer neural network. Transplant Proc 30(4): 1316-1317.
    • (1998) Transplant Proc , vol.30 , Issue.4 , pp. 1316-1317
    • Shoskes, D.A.1    Ty, R.2    Barba, L.3    Sender, M.4
  • 123
    • 0344889019 scopus 로고    scopus 로고
    • Using ANN in selection of the most important variables in prediction of chronic renal allograft rejection progression
    • Simic-Ogrizovic S, Furuncic D, Lezaic V, Radivojevic D, Blagojevic R, Djukanovic L (1999) Using ANN in selection of the most important variables in prediction of chronic renal allograft rejection progression. Transplant Proc 31(1-2): 368.
    • (1999) Transplant Proc , vol.31 , Issue.1-2 , pp. 368
    • Simic-Ogrizovic, S.1    Furuncic, D.2    Lezaic, V.3    Radivojevic, D.4    Blagojevic, R.5    Djukanovic, L.6
  • 124
    • 0031781431 scopus 로고    scopus 로고
    • Prediction of anticoagulation during hemodialysis by population kinetics and an artificial neural network
    • Smith BP, Ward RA, Brier ME (1998) Prediction of anticoagulation during hemodialysis by population kinetics and an artificial neural network. Artif Organs 22(9): 731-739.
    • (1998) Artif Organs , vol.22 , Issue.9 , pp. 731-739
    • Smith, B.P.1    Ward, R.A.2    Brier, M.E.3
  • 125
    • 0027399959 scopus 로고
    • An analysis of the single-pool urea kinetic model and estimation of errors
    • Smye SW, Hydon PE, Will E (1993) An analysis of the single-pool urea kinetic model and estimation of errors. Phys Med Biol 38(1): 115-122.
    • (1993) Phys Med Biol , vol.38 , Issue.1 , pp. 115-122
    • Smye, S.W.1    Hydon, P.E.2    Will, E.3
  • 128
    • 58549103311 scopus 로고    scopus 로고
    • Predicting technique survival in peritoneal dialysis patients: comparing artificial neural networks and logistic regression
    • Tangri N, Ansell D, Naimark D (2008) Predicting technique survival in peritoneal dialysis patients: comparing artificial neural networks and logistic regression. Nephrol Dial Transplant 23(9): 2972-2981.
    • (2008) Nephrol Dial Transplant , vol.23 , Issue.9 , pp. 2972-2981
    • Tangri, N.1    Ansell, D.2    Naimark, D.3
  • 129
    • 0001447184 scopus 로고
    • Neural network studies 1, comparison of overfitting and overtraining
    • Tetko IV, Livingstone DJ, Luik AI (1995) Neural network studies 1, comparison of overfitting and overtraining. J Chem Info Comp Sci 35(5): 826-833.
    • (1995) J Chem Info Comp Sci , vol.35 , Issue.5 , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 130
    • 1642359158 scopus 로고    scopus 로고
    • Methodological approach to the use of artificial neural networks for predicting results in medicine
    • Trujillano J, March J, Sorribas A (2004) Methodological approach to the use of artificial neural networks for predicting results in medicine. Med Clin (Barc) 122(Suppl 1): 59-67.
    • (2004) Med Clin (Barc) , vol.122 , Issue.SUPPL. 1 , pp. 59-67
    • Trujillano, J.1    March, J.2    Sorribas, A.3
  • 132
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11): 1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 134
    • 0027052238 scopus 로고
    • Neural networks in pharmacodynamic modeling. Is current modelling practice of complex kinetic systems at a dead end?
    • Veng-Pedersen P, Modi NB (1992) Neural networks in pharmacodynamic modeling. Is current modelling practice of complex kinetic systems at a dead end? J Pharmacokinet Biopharm 20(4): 397-412.
    • (1992) J Pharmacokinet Biopharm , vol.20 , Issue.4 , pp. 397-412
    • Veng-Pedersen, P.1    Modi, N.B.2
  • 135
    • 0027381145 scopus 로고
    • Application of neural networks to pharmacodynamics
    • Veng-Pedersen P, Modi NB (1993) Application of neural networks to pharmacodynamics. J Pharm Sci 82(9): 918-926.
    • (1993) J Pharm Sci , vol.82 , Issue.9 , pp. 918-926
    • Veng-Pedersen, P.1    Modi, N.B.2
  • 137
    • 0000441193 scopus 로고
    • Artificial kidney function; kinetics of hemodialysis
    • Wolf AV, Remp DG, Kiley JE, Currie GD (1951) Artificial kidney function; kinetics of hemodialysis. J Clin Invest 30(10): 1062-1070.
    • (1951) J Clin Invest , vol.30 , Issue.10 , pp. 1062-1070
    • Wolf, A.V.1    Remp, D.G.2    Kiley, J.E.3    Currie, G.D.4
  • 138
  • 139
    • 3142559635 scopus 로고    scopus 로고
    • Simulation of post-dialysis urea rebound using regional flow model
    • Yashiro M, Watanabe H, Muso E (2004) Simulation of post-dialysis urea rebound using regional flow model. Clin Exp Nephrol 8(2): 139-145.
    • (2004) Clin Exp Nephrol , vol.8 , Issue.2 , pp. 139-145
    • Yashiro, M.1    Watanabe, H.2    Muso, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.