메뉴 건너뛰기




Volumn 8, Issue 2, 2013, Pages 124-135

Applying various algorithms for species distribution modelling

Author keywords

Algorithms; Machine learning; Model formulation; Model selection; Species distribution models

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; CLIMATE CHANGE; COMPARATIVE STUDY; DECISION TREE; DEMOGRAPHY; REVIEW; SPECIES DIFFERENCE; STATISTICAL MODEL; STATISTICS;

EID: 84884378186     PISSN: None     EISSN: 17494877     Source Type: Journal    
DOI: 10.1111/1749-4877.12000     Document Type: Review
Times cited : (175)

References (77)
  • 1
    • 77349088324 scopus 로고    scopus 로고
    • Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests
    • Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B (2010). Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling 221, 1119-30.
    • (2010) Ecological Modelling , vol.221 , pp. 1119-30
    • Aertsen, W.1    Kint, V.2    Van Orshoven, J.3    Özkan, K.4    Muys, B.5
  • 2
    • 79953120983 scopus 로고    scopus 로고
    • Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA)
    • Aertsen W, Kint V, Van Orshoven J, Muys B (2011). Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environmental Modelling Software 26, 929-37.
    • (2011) Environmental Modelling Software , vol.26 , pp. 929-37
    • Aertsen, W.1    Kint, V.2    Van Orshoven, J.3    Muys, B.4
  • 3
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araujo MB, Guisan A (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography 33, 1677-88.
    • (2006) Journal of Biogeography , vol.33 , pp. 1677-88
    • Araujo, M.B.1    Guisan, A.2
  • 6
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin M (2007). Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200, 1-19.
    • (2007) Ecological Modelling , vol.200 , pp. 1-19
    • Austin, M.1
  • 7
    • 0006198702 scopus 로고    scopus 로고
    • Hierarchical Bayesian time-series models
    • Proceedings of the 15th International Workshop on Maximum Entropy and Bayesian Methods; 31 Jul-4 Aug 1995, Santa Fe, NM, USA
    • Berliner LM (1996). Hierarchical Bayesian time-series models. In: Hanson KM, Silver RN, eds. Hierarchical Bayesian Time Series Models. Fundamental Theories of Physics, vol. 79. Proceedings of the 15th International Workshop on Maximum Entropy and Bayesian Methods; 31 Jul-4 Aug 1995, Santa Fe, NM, USA, pp. 15-22.
    • (1996) Hanson KM, Silver RN, eds. Hierarchical Bayesian Time Series Models. Fundamental Theories of Physics , vol.79 , pp. 15-22
    • Berliner, L.M.1
  • 8
    • 0036643222 scopus 로고    scopus 로고
    • Using J-pruning to reduce overfitting in classification trees
    • Bramer M (2002). Using J-pruning to reduce overfitting in classification trees. Knowledge-Based Systems 15, 301-8.
    • (2002) Knowledge-Based Systems , vol.15 , pp. 301-8
    • Bramer, M.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001a). Random forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modelling: the two cultures
    • Breiman L (2001b). Statistical modelling: the two cultures. Statistical Science 16, 199-215.
    • (2001) Statistical Science , vol.16 , pp. 199-215
    • Breiman, L.1
  • 12
    • 3042679203 scopus 로고    scopus 로고
    • Presence-absence versus presence-only modelling methods for predicting bird habitat suitability
    • Brotons L, Thuiller W, Araujo MB, Hirzel AH (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27, 437-48.
    • (2004) Ecography , vol.27 , pp. 437-48
    • Brotons, L.1    Thuiller, W.2    Araujo, M.B.3    Hirzel, A.H.4
  • 13
    • 70350397840 scopus 로고    scopus 로고
    • Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change
    • Coetzee BWT, Robertson MP, Erasmus BFN, van Rensburg BJ, Thuiller W (2009). Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Global Ecology and Biogeography 18, 701-10.
    • (2009) Global Ecology and Biogeography , vol.18 , pp. 701-10
    • Coetzee, B.W.T.1    Robertson, M.P.2    Erasmus, B.F.N.3    van Rensburg, B.J.4    Thuiller, W.5
  • 14
    • 79951881349 scopus 로고    scopus 로고
    • Conservation in the face of climate change: the roles of alternative models, monitoring and adaptation in confronting and reducing uncertainty
    • Conroy MJ, Runge MC, Nichols JD, Stodola KW, Cooper RJ (2011). Conservation in the face of climate change: the roles of alternative models, monitoring and adaptation in confronting and reducing uncertainty. Biological Conservation 144, 1204-13.
    • (2011) Biological Conservation , vol.144 , pp. 1204-13
    • Conroy, M.J.1    Runge, M.C.2    Nichols, J.D.3    Stodola, K.W.4    Cooper, R.J.5
  • 15
    • 0036857859 scopus 로고    scopus 로고
    • Ecologic niche modelling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important Chagas' disease vector in northeastern Brazil (hemiptera, reduviidae, triatominae)
    • Costa J, Peterson AT, Beard CB (2002). Ecologic niche modelling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important Chagas' disease vector in northeastern Brazil (hemiptera, reduviidae, triatominae). American Journal of Tropical Medicine and Hygiene 67, 516-20.
    • (2002) American Journal of Tropical Medicine and Hygiene , vol.67 , pp. 516-20
    • Costa, J.1    Peterson, A.T.2    Beard, C.B.3
  • 16
    • 65349116559 scopus 로고    scopus 로고
    • Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modelling
    • Cressie N, Calder CA, Clark JS, Hoef JMV, Wikle CK (2009). Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modelling. Ecological Applications 19, 553-70.
    • (2009) Ecological Applications , vol.19 , pp. 553-70
    • Cressie, N.1    Calder, C.A.2    Clark, J.S.3    Hoef, J.M.V.4    Wikle, C.K.5
  • 17
    • 0033749212 scopus 로고    scopus 로고
    • Classification and regression trees: a powerful yet simple technique for ecological data analysis
    • De'ath G, Fabricius KE (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81, 3178-92.
    • (2000) Ecology , vol.81 , pp. 3178-92
    • De'ath, G.1    Fabricius, K.E.2
  • 18
    • 33644684193 scopus 로고    scopus 로고
    • Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: comparison and implications for policy
    • del Barrio G, Harrison PA, Berry PM et al. (2006). Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: comparison and implications for policy. Environmental Science & Policy 9, 129-47.
    • (2006) Environmental Science & Policy , vol.9 , pp. 129-47
    • del Barrio, G.1    Harrison, P.A.2    Berry, P.M.3
  • 20
    • 38649108841 scopus 로고    scopus 로고
    • Prediction uncertainty of environmental change effects on temperate European biodiversity
    • Dormann CF, Schweiger O, Arens P et al. (2008). Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecology Letters 11, 235-44.
    • (2008) Ecology Letters , vol.11 , pp. 235-44
    • Dormann, C.F.1    Schweiger, O.2    Arens, P.3
  • 21
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models
    • Elith J, Graham CH (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32, 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 22
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith J, Graham CH, Anderson RP et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-51.
    • (2006) Ecography , vol.29 , pp. 129-51
    • Elith, J.1    Graham, C.H.2    Anderson, R.P.3
  • 23
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179-88.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-88
    • Fisher, R.A.1
  • 24
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics 28, 337-407.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 25
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH (1991). Multivariate adaptive regression splines. The Annals of Statistics 19, 1-67.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 26
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29, 1189-232.
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-232
    • Friedman, J.H.1
  • 27
    • 44649140393 scopus 로고    scopus 로고
    • Incorporating uncertainty about species' potential distributions under climate change into the selection of conservation areas with a case study from the Arctic Coastal Plain of Alaska
    • Fuller T, Morton DP, Sarkar S (2008). Incorporating uncertainty about species' potential distributions under climate change into the selection of conservation areas with a case study from the Arctic Coastal Plain of Alaska. Biological Conservation 141, 1547-59.
    • (2008) Biological Conservation , vol.141 , pp. 1547-59
    • Fuller, T.1    Morton, D.P.2    Sarkar, S.3
  • 28
    • 38349178606 scopus 로고    scopus 로고
    • The influence of spatial errors in species occurrence data used in distribution models
    • Graham CH, Elith J, Hijmans RJ et al. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology 45, 239-47.
    • (2008) Journal of Applied Ecology , vol.45 , pp. 239-47
    • Graham, C.H.1    Elith, J.2    Hijmans, R.J.3
  • 29
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan A, Thuiller W (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009.
    • (2005) Ecology Letters , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 30
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan A, Zimmermann NE (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-86.
    • (2000) Ecological Modelling , vol.135 , pp. 147-86
    • Guisan, A.1    Zimmermann, N.E.2
  • 31
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: setting the scene
    • Guisan A, Edwards TC, Hastie T (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157, 89-100.
    • (2002) Ecological Modelling , vol.157 , pp. 89-100
    • Guisan, A.1    Edwards, T.C.2    Hastie, T.3
  • 35
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield JJ (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS 79, 2554-8.
    • (1982) PNAS , vol.79 , pp. 2554-8
    • Hopfield, J.J.1
  • 36
    • 38349150302 scopus 로고    scopus 로고
    • Estimating potential habitat for 134 eastern US tree species under six climate scenarios
    • Iverson LR, Prasad AM, Matthews SN, Peters M (2008). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management 254, 390-406.
    • (2008) Forest Ecology and Management , vol.254 , pp. 390-406
    • Iverson, L.R.1    Prasad, A.M.2    Matthews, S.N.3    Peters, M.4
  • 39
    • 85045014889 scopus 로고
    • The strategy of model building in population ecology
    • Levins R (1966). The strategy of model building in population ecology. American Scientist 54, 421-31.
    • (1966) American Scientist , vol.54 , pp. 421-31
    • Levins, R.1
  • 40
    • 78651277587 scopus 로고    scopus 로고
    • Climate change induced range shifts of Galliformes in China
    • Li RQ, Tian HD, Li XH (2010). Climate change induced range shifts of Galliformes in China. Integrative Zoology 5, 154-63.
    • (2010) Integrative Zoology , vol.5 , pp. 154-63
    • Li, R.Q.1    Tian, H.D.2    Li, X.H.3
  • 41
    • 83055179750 scopus 로고    scopus 로고
    • Can we model the probability of presence of species without absence data?
    • Li WK, Guo QH, Elkan C (2011). Can we model the probability of presence of species without absence data?. Ecography 34, 1096-105.
    • (2011) Ecography , vol.34 , pp. 1096-105
    • Li, W.K.1    Guo, Q.H.2    Elkan, C.3
  • 42
    • 80052848777 scopus 로고    scopus 로고
    • Predictive Power Estimation Algorithm (PPEA)a new algorithm to reduce overfitting for genomic biomarker discovery
    • Liu J, Jolly RA, Smith AT et al. (2011). Predictive Power Estimation Algorithm (PPEA)a new algorithm to reduce overfitting for genomic biomarker discovery. PLOS ONE 6, e24233.
    • (2011) PLOS ONE , vol.6
    • Liu, J.1    Jolly, R.A.2    Smith, A.T.3
  • 43
    • 70449518430 scopus 로고    scopus 로고
    • The performance of state-of-the-art modelling techniques depends on geographical distribution of species
    • Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009). The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling 220, 3512-20.
    • (2009) Ecological Modelling , vol.220 , pp. 3512-20
    • Marmion, M.1    Luoto, M.2    Heikkinen, R.K.3    Thuiller, W.4
  • 45
  • 47
    • 34447638499 scopus 로고    scopus 로고
    • Predicting species distributions: a critical comparison of the most common statistical models using artificial species
    • Meynard CN, Quinn JF (2007). Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography 34, 1455-69.
    • (2007) Journal of Biogeography , vol.34 , pp. 1455-69
    • Meynard, C.N.1    Quinn, J.F.2
  • 48
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • Moisen GG, Frescino TS (2002). Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling 157, 209-25.
    • (2002) Ecological Modelling , vol.157 , pp. 209-25
    • Moisen, G.G.1    Frescino, T.S.2
  • 49
    • 66149110788 scopus 로고    scopus 로고
    • Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change
    • Morin X, Thuiller W (2009). Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301-13.
    • (2009) Ecology , vol.90 , pp. 1301-13
    • Morin, X.1    Thuiller, W.2
  • 51
    • 49249102441 scopus 로고    scopus 로고
    • Machine learning methods without tears: a primer for ecologists
    • Olden JD, Lawler JJ, Poff NL (2008). Machine learning methods without tears: a primer for ecologists. Quarterly Review of Biology 83, 171-93.
    • (2008) Quarterly Review of Biology , vol.83 , pp. 171-93
    • Olden, J.D.1    Lawler, J.J.2    Poff, N.L.3
  • 52
    • 14944340767 scopus 로고    scopus 로고
    • Taking the uncertainty in climate-change vulnerability assessment seriously
    • Patt A, Klein RJT, de la Vega-Leinert A (2005). Taking the uncertainty in climate-change vulnerability assessment seriously. Comptes Rendus Geosciences 337, 411-24.
    • (2005) Comptes Rendus Geosciences , vol.337 , pp. 411-24
    • Patt, A.1    Klein, R.J.T.2    de la Vega-Leinert, A.3
  • 55
    • 41449100102 scopus 로고    scopus 로고
    • Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation
    • Phillips SJ, Dudik M (2008). Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-75.
    • (2008) Ecography , vol.31 , pp. 161-75
    • Phillips, S.J.1    Dudik, M.2
  • 57
  • 58
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad AM, Iverson LR, Liaw A (2006). Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9, 181-99.
    • (2006) Ecosystems , vol.9 , pp. 181-99
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 59
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna
    • R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
    • (2011) R: A Language and Environment for Statistical Computing
  • 61
    • 0026332221 scopus 로고
    • Neural networks as a tool for utilizing laboratory information-comparison with linear discriminant-analysis and with classification and regression trees
    • Reibnegger G, Weiss G, Wernerfelmayer G, Judmaier G, Wachter H (1991). Neural networks as a tool for utilizing laboratory information-comparison with linear discriminant-analysis and with classification and regression trees. PNAS 88, 11426-30.
    • (1991) PNAS , vol.88 , pp. 11426-30
    • Reibnegger, G.1    Weiss, G.2    Wernerfelmayer, G.3    Judmaier, G.4    Wachter, H.5
  • 63
    • 0030274304 scopus 로고    scopus 로고
    • Testing ecological models: the meaning of validation
    • Rykiel EJ (1996). Testing ecological models: the meaning of validation. Ecological Modelling 90, 229-44.
    • (1996) Ecological Modelling , vol.90 , pp. 229-44
    • Rykiel, E.J.1
  • 64
    • 4644223644 scopus 로고    scopus 로고
    • An evaluation of methods for modelling species distributions
    • Segurado P, Araujo MB (2004). An evaluation of methods for modelling species distributions. Journal of Biogeography 31, 1555-68.
    • (2004) Journal of Biogeography , vol.31 , pp. 1555-68
    • Segurado, P.1    Araujo, M.B.2
  • 66
    • 0036468622 scopus 로고    scopus 로고
    • Effects of sample size on accuracy of species distribution models
    • Stockwell DRB, Peterson AT (2002). Effects of sample size on accuracy of species distribution models. Ecological Modelling 148, 1-13.
    • (2002) Ecological Modelling , vol.148 , pp. 1-13
    • Stockwell, D.R.B.1    Peterson, A.T.2
  • 68
    • 4744352914 scopus 로고    scopus 로고
    • Effects of restricting environmental range of data to project current and future species distributions
    • Thuiller W, Brotons L, Araujo MB, Lavorel S (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165-72.
    • (2004) Ecography , vol.27 , pp. 165-72
    • Thuiller, W.1    Brotons, L.2    Araujo, M.B.3    Lavorel, S.4
  • 71
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD-a platform for ensemble forecasting of species distributions
    • Thuiller W, Lafourcade B, Engler R, Araujo MB (2009b). BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 32, 369-73.
    • (2009) Ecography , vol.32 , pp. 369-73
    • Thuiller, W.1    Lafourcade, B.2    Engler, R.3    Araujo, M.B.4
  • 72
    • 34250322230 scopus 로고    scopus 로고
    • A comparative evaluation of presence-only methods for modelling species distribution
    • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007). A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions 13, 397-405.
    • (2007) Diversity and Distributions , vol.13 , pp. 397-405
    • Tsoar, A.1    Allouche, O.2    Steinitz, O.3    Rotem, D.4    Kadmon, R.5
  • 74
    • 73949100096 scopus 로고    scopus 로고
    • Niches, models and climate change: assessing the assumptions and uncertainties
    • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009). Niches, models and climate change: assessing the assumptions and uncertainties. PNAS 106, 19729-36.
    • (2009) PNAS , vol.106 , pp. 19729-36
    • Wiens, J.A.1    Stralberg, D.2    Jongsomjit, D.3    Howell, C.A.4    Snyder, M.A.5
  • 75
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • Wikle CK (2003). Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84, 1382-94.
    • (2003) Ecology , vol.84 , pp. 1382-94
    • Wikle, C.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.