메뉴 건너뛰기




Volumn 31, Issue 2, 2008, Pages 161-175

Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation

Author keywords

[No Author keywords available]

Indexed keywords

CALIBRATION; DATA SET; ECOLOGICAL MODELING; ESTIMATION METHOD; GEOGRAPHICAL DISTRIBUTION; MODEL VALIDATION; PERFORMANCE ASSESSMENT; PROBABILITY;

EID: 41449100102     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.0906-7590.2008.5203.x     Document Type: Article
Times cited : (5359)

References (38)
  • 1
    • 0038025507 scopus 로고    scopus 로고
    • Real vs. artefactual absences in species distributions: Tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela
    • Anderson, R. P. 2003. Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela Journal of Biogeography 30 : 591 605.
    • (2003) Journal of Biogeography , vol.30 , pp. 591-605
    • Anderson, R.P.1
  • 2
    • 24344464067 scopus 로고    scopus 로고
    • Validation of species-climate impact models under climate change
    • Araujo, M. B. et al. 2005. Validation of species-climate impact models under climate change Global Change Biology 11 : 1504 1513.
    • (2005) Global Change Biology , vol.11 , pp. 1504-1513
    • Araujo, M.B.1
  • 5
    • 84864038934 scopus 로고    scopus 로고
    • Correcting sample selection bias in maximum entropy density estimation
    • The MIT Press
    • Dudík, M. et al. 2005. Correcting sample selection bias in maximum entropy density estimation. Advances in Neural Information Processing Systems 18. The MIT Press 323 330.
    • (2005) Advances in Neural Information Processing Systems 18. , pp. 323-330
    • Dudík, M.1
  • 6
    • 0002636165 scopus 로고    scopus 로고
    • Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants
    • Ferson, S. Burgman, M. Springer
    • Elith, J. 2002. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants Ferson, S. Burgman, M. Quantitative methods for conservation biology. Springer 39 58.
    • (2002) Quantitative Methods for Conservation Biology. , pp. 39-58
    • Elith, J.1
  • 7
    • 34247359908 scopus 로고    scopus 로고
    • Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
    • Elith, J. Leathwick, J. 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines Diversity and Distributions 13 : 265 275.
    • (2007) Diversity and Distributions , vol.13 , pp. 265-275
    • Elith, J.1    Leathwick, J.2
  • 8
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data Ecography 29 : 129 151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 9
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding, A. H. Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models Environmental Conservation 24 : 38 49.
    • (1997) Environmental Conservation , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 10
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman, J. 1991. Multivariate adaptive regression splines (with discussion) Ann. Stat. 19 : 1 141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.1
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. 2001. Greedy function approximation: a gradient boosting machine Ann. Stat. 29 : 1189 1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 4344601500 scopus 로고    scopus 로고
    • New developments in museum-based informatics and applications in biodiversity analysis
    • Graham, C. H. et al. 2004. New developments in museum-based informatics and applications in biodiversity analysis Trends Ecol. Evol. 19 : 497 503.
    • (2004) Trends Ecol. Evol. , vol.19 , pp. 497-503
    • Graham, C.H.1
  • 13
    • 31444443231 scopus 로고    scopus 로고
    • Habitat history improves prediction of biodiversity in a rainforest fauna
    • Graham, C. H. et al. 2006. Habitat history improves prediction of biodiversity in a rainforest fauna Proc. Nat. Acad. Sci. USA 103 : 632 636.
    • (2006) Proc. Nat. Acad. Sci. USA , vol.103 , pp. 632-636
    • Graham, C.H.1
  • 15
    • 6344274901 scopus 로고    scopus 로고
    • Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory
    • Grünwald, P. D. Dawid, A. P. 2004. Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory Ann. Stat. 32 : 1367 1433.
    • (2004) Ann. Stat. , vol.32 , pp. 1367-1433
    • Grünwald, P.D.1    Dawid, A.P.2
  • 18
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes, E. T. 1957. Information theory and statistical mechanics Phys. Rev. 106 : 620 630.
    • (1957) Phys. Rev. , vol.106 , pp. 620-630
    • Jaynes, E.T.1
  • 19
    • 12144266865 scopus 로고    scopus 로고
    • Use and interpretation of logistic regression in habitat-selection studies
    • Keating, K. A. Cherry, S. 2004. Use and interpretation of logistic regression in habitat-selection studies J. Wildl. Manage. 68 : 774 789.
    • (2004) J. Wildl. Manage. , vol.68 , pp. 774-789
    • Keating, K.A.1    Cherry, S.2
  • 20
    • 1942418620 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • Ng, A. Y. Jordan, M. I. 2001. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes Adv. Neural Inform. Process. Syst. 14 : 605 610.
    • (2001) Adv. Neural Inform. Process. Syst. , vol.14 , pp. 605-610
    • Ng, A.Y.1    Jordan, M.I.2
  • 21
    • 33748501576 scopus 로고    scopus 로고
    • Model-based uncertainty in species range prediction
    • Pearson, R. G. et al. 2006. Model-based uncertainty in species range prediction J. Biogeogr. 33 : 1704 1711.
    • (2006) J. Biogeogr. , vol.33 , pp. 1704-1711
    • Pearson, R.G.1
  • 22
    • 33748547836 scopus 로고    scopus 로고
    • Uses and requirements of ecological niche models and related distributional models
    • Peterson, A. T. 2006. Uses and requirements of ecological niche models and related distributional models Biodiv. Inform. 3 : 59 72.
    • (2006) Biodiv. Inform. , vol.3 , pp. 59-72
    • Peterson, A.T.1
  • 23
    • 0033588039 scopus 로고    scopus 로고
    • Conservatism of ecological niches in evolutionary time
    • Peterson, A. T. et al. 1999. Conservatism of ecological niches in evolutionary time Science 285 : 1265 1267.
    • (1999) Science , vol.285 , pp. 1265-1267
    • Peterson, A.T.1
  • 24
    • 33646367416 scopus 로고    scopus 로고
    • Predicting the potential invasive distributions of four alien plant species in North America
    • Peterson, A. T. et al. 2003. Predicting the potential invasive distributions of four alien plant species in North America Weed Sci. 51 : 863 868.
    • (2003) Weed Sci. , vol.51 , pp. 863-868
    • Peterson, A.T.1
  • 27
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S. J. et al. 2006. Maximum entropy modeling of species geographic distributions Ecol. Model. 190 : 231 259.
    • (2006) Ecol. Model. , vol.190 , pp. 231-259
    • Phillips, S.J.1
  • 28
    • 0034973664 scopus 로고    scopus 로고
    • Evaluation of museum collection data for use in biodiversity assessment
    • Ponder, W. F. et al. 2001. Evaluation of museum collection data for use in biodiversity assessment Conserv. Biol. 15 : 648 657.
    • (2001) Conserv. Biol. , vol.15 , pp. 648-657
    • Ponder, W.F.1
  • 29
    • 33646543813 scopus 로고    scopus 로고
    • Are niche-based species distribution models transferable in space?
    • Randin, C. F. et al. 2006. Are niche-based species distribution models transferable in space? J. Biogeogr. 33 : 1689 1703.
    • (2006) J. Biogeogr. , vol.33 , pp. 1689-1703
    • Randin, C.F.1
  • 30
    • 0242573339 scopus 로고    scopus 로고
    • Geographical sampling bias and its implications for conservation priorities in Africa
    • Reddy, S. Dávalos, L. M. 2003. Geographical sampling bias and its implications for conservation priorities in Africa J. Biogeogr. 30 : 1719 1727.
    • (2003) J. Biogeogr. , vol.30 , pp. 1719-1727
    • Reddy, S.1    Dávalos, L.M.2
  • 31
    • 1542329839 scopus 로고    scopus 로고
    • Extinction risk from climate change
    • Thomas, C. D. et al. 2004. Extinction risk from climate change Nature 427 : 145 148.
    • (2004) Nature , vol.427 , pp. 145-148
    • Thomas, C.D.1
  • 32
    • 33646253574 scopus 로고    scopus 로고
    • Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale
    • Thuiller, W. et al. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale Global Change Biol. 11 : 2234 2250.
    • (2005) Global Change Biol. , vol.11 , pp. 2234-2250
    • Thuiller, W.1
  • 34
    • 0002591570 scopus 로고
    • Information theoretical optimization techniques
    • Topsøe, F. 1979. Information theoretical optimization techniques Kybernetika 15 : 8 27.
    • (1979) Kybernetika , vol.15 , pp. 8-27
    • Topsøe, F.1
  • 36
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams, P. M. 1995. Bayesian regularization and pruning using a Laplace prior Neural Comput. 7 : 117 143.
    • (1995) Neural Comput. , vol.7 , pp. 117-143
    • Williams, P.M.1
  • 37
    • 0037202451 scopus 로고    scopus 로고
    • Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns
    • Zaniewski, A. E. et al. 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns Ecol. Model. 157 : 261 280.
    • (2002) Ecol. Model. , vol.157 , pp. 261-280
    • Zaniewski, A.E.1
  • 38
    • 0034662310 scopus 로고    scopus 로고
    • Summarizing the predictive power of a generalized linear model
    • Zheng, B. Agresti, A. 2000. Summarizing the predictive power of a generalized linear model Stat. Med. 19 : 1771 1781.
    • (2000) Stat. Med. , vol.19 , pp. 1771-1781
    • Zheng, B.1    Agresti, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.