메뉴 건너뛰기




Volumn 33, Issue 1, 2011, Pages 17-30

On learning and cross-validation with decomposed nyström approximation of kernel matrix

Author keywords

Cross validation; Empirical kernel map; Kernel methods; Nystr m approximation; Reduced set method

Indexed keywords

BASIS VECTOR; COMPUTATIONAL COSTS; CROSS VALIDATION; EFFICIENT METHOD; EMPIRICAL KERNEL MAP; FEATURE SPACE; INPUT DATAS; KERNEL MATRICES; KERNEL METHODS; LEARNING TASKS; LINEAR SOLVER; REDUCED SET METHOD; SET APPROXIMATIONS; TRAINING METHODS;

EID: 79751536508     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-010-9159-4     Document Type: Article
Times cited : (4)

References (33)
  • 1
    • 34547411882 scopus 로고    scopus 로고
    • Sparse least squares support vector training in the reduced empirical feature space
    • 10.1007/s10044-007-0062-1
    • S Abe 2007 Sparse least squares support vector training in the reduced empirical feature space Pattern Analy Appl 10 3 203 214 10.1007/s10044-007-0062- 1
    • (2007) Pattern Analy Appl , vol.10 , Issue.3 , pp. 203-214
    • Abe, S.1
  • 3
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • DD Léon Bottou Olivier Chapelle, Weston J (eds) MIT Press, Cambridge
    • Bottou L, Lin CJ (2007) Support vector machine solvers. In: DD Léon Bottou Olivier Chapelle, Weston J (eds) Large-scale kernel machines, neural information processing, MIT Press, Cambridge, pp 1-28
    • (2007) Large-scale Kernel Machines, Neural Information Processing , pp. 1-28
    • Bottou, L.1    Lin, C.J.2
  • 4
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • DOI 10.1016/j.neunet.2004.07.002, PII S0893608004001431
    • GC Cawley NLC Talbot 2004 Fast exact leave-one-out cross-validation of sparse least-squares support vector machin (Pubitemid 39487142)
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • 0831.68098
    • C Cortes V Vapnik 1995 Support-vector networks Mach Learn 20 3 273 297 0831.68098
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 84898966891 scopus 로고    scopus 로고
    • Kernel feature spaces and nonlinear blind source separation
    • T.G. Dietterich S. Becker Z. Ghahramani (eds). MIT Press Cambridge
    • Harmeling S, Ziehe A, Kawanabe M, Müller KR (2002) Kernel feature spaces and nonlinear blind source separation. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, pp 761-768
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 761-768
    • Harmeling, S.1    Ziehe, A.2    Kawanabe, M.3    Müller, K.R.4
  • 7
  • 8
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Joachims T (2006) Training linear SVMs in linear time. In: Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds) Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2006). ACM Press, New York, pp 217-226 (Pubitemid 44535518)
    • (2006) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , vol.2006 , pp. 217-226
    • Joachims, T.1
  • 11
    • 0742321291 scopus 로고    scopus 로고
    • A study on reduced support vector machines
    • 10.1109/TNN.2003.820828
    • KM Lin CJ Lin 2003 A study on reduced support vector machines IEEE Trans Neural Netw 14 1449 1459 10.1109/TNN.2003.820828
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 1449-1459
    • Lin, K.M.1    Lin, C.J.2
  • 15
    • 60949112451 scopus 로고    scopus 로고
    • An efficient algorithm for learning to rank from preference graphs
    • 10.1007/s10994-008-5097-z
    • T Pahikkala E Tsivtsivadze A Airola J Boberg J Järvinen 2009 An efficient algorithm for learning to rank from preference graphs Mach Learn 75 1 129 165 10.1007/s10994-008-5097-z
    • (2009) Mach Learn , vol.75 , Issue.1 , pp. 129-165
    • Pahikkala, T.1    Tsivtsivadze, E.2    Airola, A.3    Boberg, J.4    Järvinen, J.5
  • 16
  • 18
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • J.C. Platt D. Koller Y. Singer S.T. Roweis J.C. Platt D. Koller Y. Singer S.T. Roweis (eds). MIT Press Cambridge
    • Rahimi A, Recht B (2007) Random features for large-scale kernel machines. In: Platt JC, Koller D, Singer Y, Roweis ST, Platt JC, Koller D, Singer Y, Roweis ST (eds) Advances in neural information processing systems 20. MIT Press, Cambridge
    • (2007) Advances in Neural Information Processing Systems 20
    • Rahimi, A.1    Recht, B.2
  • 21
    • 84865131152 scopus 로고    scopus 로고
    • A Generalized Representer Theorem
    • Computational Learning Theory
    • Schölkopf B, Herbrich R, Smola AJ (2001) A generalized representer theorem. In: Helmbold D, Williamson R (eds) Proceedings of the 14th annual conference on computational learning theory and 5th European conference on computational learning theory (COLT 2001). Springer, Berlin, Germany, pp 416-426 (Pubitemid 33312837)
    • (2001) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2111 , pp. 416-426
    • Scholkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 25
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-GrAdient sOlver for SVM
    • DOI 10.1145/1273496.1273598, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Shwartz SS, Singer Y, Srebro N (2007) Pegasos: primal estimated sub-gradient solver for SVM. In: Ghahramani Z (ed) Proceedings of the 24th international conference on Machine learning (ICML 2007). ACM international conference proceeding series, vol 227. New York, pp 807-814. doi: 10.1145/1273496.1273598 (Pubitemid 47275141)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 31
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • T.K. Leen T.G. Dietterich V. Tresp (eds). MIT Press Cambridge
    • Williams CKI, Seeger M (2001) Using the Nyström method to speed up kernel machines. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems 13. MIT Press, Cambridge, pp 682-688
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 32
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • DOI 10.1109/TNN.2004.841784
    • H Xiong M Swamy MO Ahmad 2005 Optimizing the kernel in the empirical feature space IEEE Trans Neural Netw 16 2 460 474 10.1109/TNN.2004.841784 (Pubitemid 40390828)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.