-
1
-
-
34547411882
-
Sparse least squares support vector training in the reduced empirical feature space
-
10.1007/s10044-007-0062-1
-
S Abe 2007 Sparse least squares support vector training in the reduced empirical feature space Pattern Analy Appl 10 3 203 214 10.1007/s10044-007-0062- 1
-
(2007)
Pattern Analy Appl
, vol.10
, Issue.3
, pp. 203-214
-
-
Abe, S.1
-
3
-
-
42249094907
-
Support vector machine solvers
-
DD Léon Bottou Olivier Chapelle, Weston J (eds) MIT Press, Cambridge
-
Bottou L, Lin CJ (2007) Support vector machine solvers. In: DD Léon Bottou Olivier Chapelle, Weston J (eds) Large-scale kernel machines, neural information processing, MIT Press, Cambridge, pp 1-28
-
(2007)
Large-scale Kernel Machines, Neural Information Processing
, pp. 1-28
-
-
Bottou, L.1
Lin, C.J.2
-
4
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
DOI 10.1016/j.neunet.2004.07.002, PII S0893608004001431
-
GC Cawley NLC Talbot 2004 Fast exact leave-one-out cross-validation of sparse least-squares support vector machin (Pubitemid 39487142)
-
(2004)
Neural Networks
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
5
-
-
34249753618
-
Support-vector networks
-
0831.68098
-
C Cortes V Vapnik 1995 Support-vector networks Mach Learn 20 3 273 297 0831.68098
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
84898966891
-
Kernel feature spaces and nonlinear blind source separation
-
T.G. Dietterich S. Becker Z. Ghahramani (eds). MIT Press Cambridge
-
Harmeling S, Ziehe A, Kawanabe M, Müller KR (2002) Kernel feature spaces and nonlinear blind source separation. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, pp 761-768
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 761-768
-
-
Harmeling, S.1
Ziehe, A.2
Kawanabe, M.3
Müller, K.R.4
-
8
-
-
33749563073
-
Training linear SVMs in linear time
-
KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
Joachims T (2006) Training linear SVMs in linear time. In: Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds) Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2006). ACM Press, New York, pp 217-226 (Pubitemid 44535518)
-
(2006)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, vol.2006
, pp. 217-226
-
-
Joachims, T.1
-
9
-
-
84862286216
-
Sampling techniques for the Nyström method
-
van Dyk D, Welling M (eds) JMLR workshop and conference proceedings JMLR
-
Kumar S, Mohri M, Talwalkar A (2009) Sampling techniques for the Nyström method. In: van Dyk D, Welling M (eds) Proceedings of the twelfth international conference on artificial intelligence and statistics (AISTATS 2009). JMLR workshop and conference proceedings, vol 5, JMLR, pp 304-311
-
(2009)
Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009)
, vol.5
, pp. 304-311
-
-
Kumar, S.1
Mohri, M.2
Talwalkar, A.3
-
11
-
-
0742321291
-
A study on reduced support vector machines
-
10.1109/TNN.2003.820828
-
KM Lin CJ Lin 2003 A study on reduced support vector machines IEEE Trans Neural Netw 14 1449 1459 10.1109/TNN.2003.820828
-
(2003)
IEEE Trans Neural Netw
, vol.14
, pp. 1449-1459
-
-
Lin, K.M.1
Lin, C.J.2
-
13
-
-
84862520910
-
Fast n-fold cross-validation for regularized least-squares
-
T. Honkela T. Raiko J. Kortela H. Valpola (eds). Otamedia Oy Espoo, Finland
-
Pahikkala T, Boberg J, Salakoski T (2006) Fast n-fold cross-validation for regularized least-squares. In: Honkela T, Raiko T, Kortela J, Valpola H (eds) Proceedings of the ninth Scandinavian conference on artificial intelligence (SCAI 2006). Otamedia Oy, Espoo, Finland, pp 83-90
-
(2006)
Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006)
, pp. 83-90
-
-
Pahikkala, T.1
Boberg, J.2
Salakoski, T.3
-
14
-
-
78650747993
-
Efficient hold-out for subset of regressors. In: Kolehmainen M, Toivanen P, Beliczynski B (eds)
-
Springer
-
Pahikkala T, Suominen H, Boberg J, Salakoski T (2009) Efficient hold-out for subset of regressors. In: Kolehmainen M, Toivanen P, Beliczynski B (eds) Proceedings of the international conference on natural and adaptive computing algorithms (ICANNGA 2009). Lecture notes in computer science, vol 5495. Springer, pp 350-359
-
(2009)
Proceedings of the International Conference on Natural and Adaptive Computing Algorithms (ICANNGA 2009). Lecture Notes in Computer Science
, vol.5495
, pp. 350-359
-
-
Pahikkala, T.1
Suominen, H.2
Boberg, J.3
Salakoski, T.4
-
15
-
-
60949112451
-
An efficient algorithm for learning to rank from preference graphs
-
10.1007/s10994-008-5097-z
-
T Pahikkala E Tsivtsivadze A Airola J Boberg J Järvinen 2009 An efficient algorithm for learning to rank from preference graphs Mach Learn 75 1 129 165 10.1007/s10994-008-5097-z
-
(2009)
Mach Learn
, vol.75
, Issue.1
, pp. 129-165
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Airola, A.3
Boberg, J.4
Järvinen, J.5
-
18
-
-
77953218689
-
Random features for large-scale kernel machines
-
J.C. Platt D. Koller Y. Singer S.T. Roweis J.C. Platt D. Koller Y. Singer S.T. Roweis (eds). MIT Press Cambridge
-
Rahimi A, Recht B (2007) Random features for large-scale kernel machines. In: Platt JC, Koller D, Singer Y, Roweis ST, Platt JC, Koller D, Singer Y, Roweis ST (eds) Advances in neural information processing systems 20. MIT Press, Cambridge
-
(2007)
Advances in Neural Information Processing Systems 20
-
-
Rahimi, A.1
Recht, B.2
-
19
-
-
9444250658
-
Regularized least-squares classification
-
J. Suykens G. Horvath S. Basu C. Micchelli J. Vandewalle (eds). IOS Press Amsterdam
-
Rifkin R, Yeo G, Poggio T (2003) Regularized least-squares classification. In: Suykens J, Horvath G, Basu S, Micchelli C, Vandewalle J (eds) Advances in learning theory: methods, model and applications, nato science series III: computer and system sciences, vol 190, chap. 7. IOS Press, Amsterdam, pp 131-154
-
(2003)
Advances in Learning Theory: Methods, Model and Applications, Nato Science Series III: Computer and System Sciences, Vol 190, Chap. 7
, pp. 131-154
-
-
Rifkin, R.1
Yeo, G.2
Poggio, T.3
-
21
-
-
84865131152
-
A Generalized Representer Theorem
-
Computational Learning Theory
-
Schölkopf B, Herbrich R, Smola AJ (2001) A generalized representer theorem. In: Helmbold D, Williamson R (eds) Proceedings of the 14th annual conference on computational learning theory and 5th European conference on computational learning theory (COLT 2001). Springer, Berlin, Germany, pp 416-426 (Pubitemid 33312837)
-
(2001)
LECTURE NOTES IN COMPUTER SCIENCE
, Issue.2111
, pp. 416-426
-
-
Scholkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
22
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
10.1109/72.788641
-
B Schölkopf S Mika C Burges P Knirsch KR Müller G Rätsch A Smola 1999 Input space versus feature space in kernel-based methods IEEE Trans Neural Netw 10 5 1000 1017 10.1109/72.788641
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.R.5
Rätsch, G.6
Smola, A.7
-
25
-
-
34547964973
-
Pegasos: Primal estimated sub-GrAdient sOlver for SVM
-
DOI 10.1145/1273496.1273598, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
Shwartz SS, Singer Y, Srebro N (2007) Pegasos: primal estimated sub-gradient solver for SVM. In: Ghahramani Z (ed) Proceedings of the 24th international conference on Machine learning (ICML 2007). ACM international conference proceeding series, vol 227. New York, pp 807-814. doi: 10.1145/1273496.1273598 (Pubitemid 47275141)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 807-814
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
29
-
-
60949102658
-
A sparse regularized least-squares preference learning algorithm
-
Holst A, Kreuger P, Funk P (eds) IOS Press
-
Tsivtsivadze E, Pahikkala T, Airola A, Boberg J, Salakoski T (2008) A sparse regularized least-squares preference learning algorithm. In: Holst A, Kreuger P, Funk P (eds) Proceedings of the Tenth Scandinavian Conference on Artificial Intelligence (SCAI 2008). Frontiers in artificial intelligence and applications, vol 173. IOS Press, pp 76-83
-
(2008)
Proceedings of the Tenth Scandinavian Conference on Artificial Intelligence (SCAI 2008). Frontiers in Artificial Intelligence and Applications
, vol.173
, pp. 76-83
-
-
Tsivtsivadze, E.1
Pahikkala, T.2
Airola, A.3
Boberg, J.4
Salakoski, T.5
-
31
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
T.K. Leen T.G. Dietterich V. Tresp (eds). MIT Press Cambridge
-
Williams CKI, Seeger M (2001) Using the Nyström method to speed up kernel machines. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems 13. MIT Press, Cambridge, pp 682-688
-
(2001)
Advances in Neural Information Processing Systems 13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
-
32
-
-
15344339935
-
Optimizing the kernel in the empirical feature space
-
DOI 10.1109/TNN.2004.841784
-
H Xiong M Swamy MO Ahmad 2005 Optimizing the kernel in the empirical feature space IEEE Trans Neural Netw 16 2 460 474 10.1109/TNN.2004.841784 (Pubitemid 40390828)
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.2
, pp. 460-474
-
-
Xiong, H.1
Swamy, M.N.S.2
Ahmad, M.O.3
-
33
-
-
56449087564
-
Improved Nyström low-rank approximation and error analysis
-
McCallum A, Roweis S (eds) New York
-
Zhang K, Tsang IW, Kwok JT (2008) Improved Nyström low-rank approximation and error analysis. In: McCallum A, Roweis S (eds) Proceedings of the 25th international conference on Machine learning (ICML 2008). ACM international conference proceeding series, vol 307. New York, pp 1232-1239
-
(2008)
Proceedings of the 25th International Conference on Machine Learning (ICML 2008). ACM International Conference Proceeding Series
, vol.307
, pp. 1232-1239
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
|