-
1
-
-
85162414745
-
Spike and slab variational inference for multi-task and multiple kernel learning
-
24
-
Titsias, M., & Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple kernel learning. In Advances in neural information processing systems (Vol. 24, pp. 2339-2347).
-
(2011)
Advances in Neural Information Processing Systems
, pp. 2339-2347
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
-
2
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
0850.62538 1379242
-
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, Methodological, 58(1), 267-288.
-
(1996)
Journal of the Royal Statistical Society, Series B, Methodological
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
3
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
4
-
-
84952149204
-
A statistical view of some chemometrics regression tools
-
10.1080/00401706.1993.10485033 0775.62288
-
Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109-135.
-
(1993)
Technometrics
, vol.35
, Issue.2
, pp. 109-135
-
-
Frank, I.E.1
Friedman, J.H.2
-
5
-
-
84893179575
-
Variable selection via Gibbs sampling
-
10.1080/01621459.1993.10476353
-
George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881-889.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.423
, pp. 881-889
-
-
George, E.I.1
McCulloch, R.E.2
-
6
-
-
0000130839
-
Bayesian variable selection in linear regression
-
10.1080/01621459.1988.10478694 0673.62051 997578
-
Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404), 1023-1032.
-
(1988)
Journal of the American Statistical Association
, vol.83
, Issue.404
, pp. 1023-1032
-
-
Mitchell, T.J.1
Beauchamp, J.J.2
-
7
-
-
0000857113
-
Multivariate Bayesian variable selection and prediction
-
10.1111/1467-9868.00144 0909.62022 1626005
-
Brown, P. J., Vannucci, M., & Fearn, T. (1998). Multivariate Bayesian variable selection and prediction. Journal of the Royal Statistical Society, Series B, Statistical Methodology, 60(3), 627-641.
-
(1998)
Journal of the Royal Statistical Society, Series B, Statistical Methodology
, vol.60
, Issue.3
, pp. 627-641
-
-
Brown, P.J.1
Vannucci, M.2
Fearn, T.3
-
8
-
-
4043115647
-
Model uncertainty
-
10.1214/088342304000000035 1062.62044 2082148
-
Clyde, M., & George, E. I. (2004). Model uncertainty. Statistical Science, 19(1), 81-94.
-
(2004)
Statistical Science
, vol.19
, Issue.1
, pp. 81-94
-
-
Clyde, M.1
George, E.I.2
-
9
-
-
22944460748
-
Spike and slab variable selection: Frequentist and Bayesian strategies
-
10.1214/009053604000001147 1068.62079 2163158
-
Ishwaran, H., & Rao, J. S. (2005). Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730-773.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
10
-
-
84860819981
-
Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies
-
2896713
-
Carbonetto, P., & Stephens, M. (2012). Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Analysis, 7(1), 73-108.
-
(2012)
Bayesian Analysis
, vol.7
, Issue.1
, pp. 73-108
-
-
Carbonetto, P.1
Stephens, M.2
-
11
-
-
77349109776
-
A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
-
10.1186/1471-2105-11-58
-
Logsdon, B. A., Hoffman, G. E., & Mezey, J. G. (2010). A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinformatics, 11, 58.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 58
-
-
Logsdon, B.A.1
Hoffman, G.E.2
Mezey, J.G.3
-
12
-
-
0033225865
-
An introduction to variational methods for graphical models
-
10.1023/A:1007665907178 0945.68164
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183-233.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
13
-
-
0034180315
-
Mean field theory for asymmetric neural networks
-
10.1103/PhysRevE.61.5658
-
Kappen, H. J., & Spanjers, J. J. (2000). Mean field theory for asymmetric neural networks. Physical Review E, 61, 5658-5663.
-
(2000)
Physical Review e
, vol.61
, pp. 5658-5663
-
-
Kappen, H.J.1
Spanjers, J.J.2
-
16
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
1193.62107
-
Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2), 1-305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
17
-
-
84899024135
-
Tractable variational structures for approximating graphical models
-
MIT Press Cambridge
-
Barber, D., & Wiegerinck, W. (1999). Tractable variational structures for approximating graphical models. In Advances in neural information processing systems II (pp. 183-189). Cambridge: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems II
, pp. 183-189
-
-
Barber, D.1
Wiegerinck, W.2
-
18
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
10.1080/00401706.1995.10484371 0862.62059 1365720
-
Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37(4), 373-384.
-
(1995)
Technometrics
, vol.37
, Issue.4
, pp. 373-384
-
-
Breiman, L.1
-
19
-
-
69249230467
-
A review of Bayesian variable selection methods: What, how and which
-
10.1214/09-BA403 2486240
-
O'Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1), 85-118.
-
(2009)
Bayesian Analysis
, vol.4
, Issue.1
, pp. 85-118
-
-
O'Hara, R.B.1
Sillanpää, M.J.2
-
20
-
-
0033561886
-
Independent factor analysis
-
10.1162/089976699300016458
-
Attias, H. (1999). Independent factor analysis. Neural Computation, 11(4), 803-851.
-
(1999)
Neural Computation
, vol.11
, Issue.4
, pp. 803-851
-
-
Attias, H.1
-
21
-
-
77953553836
-
Bayesian learning in sparse graphical factor models via variational mean-field annealing
-
2653356
-
Yoshida, R., & West, M. (2010). Bayesian learning in sparse graphical factor models via variational mean-field annealing. Journal of Machine Learning Research, 99, 1771-1798.
-
(2010)
Journal of Machine Learning Research
, vol.99
, pp. 1771-1798
-
-
Yoshida, R.1
West, M.2
-
22
-
-
78049339967
-
Expectation propagation for Bayesian multi-task feature selection
-
Springer New York
-
Hernández-Lobato, D., Hernández-Lobato, J. M., Helleputte, T., & Dupont, P. (2010). Expectation propagation for Bayesian multi-task feature selection. In Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: part I (pp. 522-537). New York: Springer.
-
(2010)
Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases: Part i
, pp. 522-537
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Helleputte, T.3
Dupont, P.4
-
23
-
-
79955040218
-
Regression shrinkage and selection via the lasso: A retrospective
-
10.1111/j.1467-9868.2011.00771.x 2815776
-
Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society, Series B, Statistical Methodology, 73(3), 273-282.
-
(2011)
Journal of the Royal Statistical Society, Series B, Statistical Methodology
, vol.73
, Issue.3
, pp. 273-282
-
-
Tibshirani, R.1
-
24
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
10.1198/016214501753382273 1073.62547 1946581
-
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
25
-
-
80052694528
-
SparseNet: Coordinate descent with nonconvex penalties
-
10.1198/jasa.2011.tm09738 1229.62091 2894769
-
Mazumder, R., Friedman, J. H., & Hastie, T. (2011). SparseNet: coordinate descent with nonconvex penalties. Journal of the American Statistical Association, 106(495), 1125-1138.
-
(2011)
Journal of the American Statistical Association
, vol.106
, Issue.495
, pp. 1125-1138
-
-
Mazumder, R.1
Friedman, J.H.2
Hastie, T.3
-
26
-
-
49549105778
-
The Bayesian lasso
-
10.1198/016214508000000337 05564521 2524001
-
Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103(482), 681-686.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.482
, pp. 681-686
-
-
Park, T.1
Casella, G.2
-
27
-
-
84859858172
-
Bayesian hyper-lassos with non-convex penalization
-
10.1111/j.1467-842X.2011.00641.x 2910027
-
Griffin, J. E., & Brown, P. J. (2011). Bayesian hyper-lassos with non-convex penalization. Australian & New Zealand Journal of Statistics, 53(4), 423-442.
-
(2011)
Australian & New Zealand Journal of Statistics
, vol.53
, Issue.4
, pp. 423-442
-
-
Griffin, J.E.1
Brown, P.J.2
-
28
-
-
33845263263
-
On model selection consistency of lasso
-
1222.62008 2274449
-
Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. Journal of Machine Learning Research, 7, 2541-2563.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
29
-
-
29144439194
-
Decoding by linear programming
-
10.1109/TIT.2005.858979 1264.94121 2243152
-
Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203-4215.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, E.J.1
Tao, T.2
-
30
-
-
33645712892
-
Compressed sensing
-
10.1109/TIT.2006.871582 1288.94016 2241189
-
Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289-1306.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
|