메뉴 건너뛰기




Volumn 96, Issue 3, 2014, Pages 269-294

The Variational Garrote

Author keywords

Mean field; Nonnegative garrote; Sparse regression; Spike and slab; Variational approximation

Indexed keywords

INDUSTRIAL HEATING; LAGRANGE MULTIPLIERS; REGRESSION ANALYSIS;

EID: 84905499203     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5427-7     Document Type: Article
Times cited : (18)

References (31)
  • 1
    • 85162414745 scopus 로고    scopus 로고
    • Spike and slab variational inference for multi-task and multiple kernel learning
    • 24
    • Titsias, M., & Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple kernel learning. In Advances in neural information processing systems (Vol. 24, pp. 2339-2347).
    • (2011) Advances in Neural Information Processing Systems , pp. 2339-2347
    • Titsias, M.1    Lázaro-Gredilla, M.2
  • 3
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 4
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • 10.1080/00401706.1993.10485033 0775.62288
    • Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109-135.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 6
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression
    • 10.1080/01621459.1988.10478694 0673.62051 997578
    • Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404), 1023-1032.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.404 , pp. 1023-1032
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 8
    • 4043115647 scopus 로고    scopus 로고
    • Model uncertainty
    • 10.1214/088342304000000035 1062.62044 2082148
    • Clyde, M., & George, E. I. (2004). Model uncertainty. Statistical Science, 19(1), 81-94.
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 81-94
    • Clyde, M.1    George, E.I.2
  • 9
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • 10.1214/009053604000001147 1068.62079 2163158
    • Ishwaran, H., & Rao, J. S. (2005). Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730-773.
    • (2005) The Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 10
    • 84860819981 scopus 로고    scopus 로고
    • Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies
    • 2896713
    • Carbonetto, P., & Stephens, M. (2012). Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Analysis, 7(1), 73-108.
    • (2012) Bayesian Analysis , vol.7 , Issue.1 , pp. 73-108
    • Carbonetto, P.1    Stephens, M.2
  • 11
    • 77349109776 scopus 로고    scopus 로고
    • A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
    • 10.1186/1471-2105-11-58
    • Logsdon, B. A., Hoffman, G. E., & Mezey, J. G. (2010). A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinformatics, 11, 58.
    • (2010) BMC Bioinformatics , vol.11 , pp. 58
    • Logsdon, B.A.1    Hoffman, G.E.2    Mezey, J.G.3
  • 12
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • 10.1023/A:1007665907178 0945.68164
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 13
    • 0034180315 scopus 로고    scopus 로고
    • Mean field theory for asymmetric neural networks
    • 10.1103/PhysRevE.61.5658
    • Kappen, H. J., & Spanjers, J. J. (2000). Mean field theory for asymmetric neural networks. Physical Review E, 61, 5658-5663.
    • (2000) Physical Review e , vol.61 , pp. 5658-5663
    • Kappen, H.J.1    Spanjers, J.J.2
  • 16
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • 1193.62107
    • Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2), 1-305.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 17
    • 84899024135 scopus 로고    scopus 로고
    • Tractable variational structures for approximating graphical models
    • MIT Press Cambridge
    • Barber, D., & Wiegerinck, W. (1999). Tractable variational structures for approximating graphical models. In Advances in neural information processing systems II (pp. 183-189). Cambridge: MIT Press.
    • (1999) Advances in Neural Information Processing Systems II , pp. 183-189
    • Barber, D.1    Wiegerinck, W.2
  • 18
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • 10.1080/00401706.1995.10484371 0862.62059 1365720
    • Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37(4), 373-384.
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 19
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how and which
    • 10.1214/09-BA403 2486240
    • O'Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1), 85-118.
    • (2009) Bayesian Analysis , vol.4 , Issue.1 , pp. 85-118
    • O'Hara, R.B.1    Sillanpää, M.J.2
  • 20
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • 10.1162/089976699300016458
    • Attias, H. (1999). Independent factor analysis. Neural Computation, 11(4), 803-851.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 21
    • 77953553836 scopus 로고    scopus 로고
    • Bayesian learning in sparse graphical factor models via variational mean-field annealing
    • 2653356
    • Yoshida, R., & West, M. (2010). Bayesian learning in sparse graphical factor models via variational mean-field annealing. Journal of Machine Learning Research, 99, 1771-1798.
    • (2010) Journal of Machine Learning Research , vol.99 , pp. 1771-1798
    • Yoshida, R.1    West, M.2
  • 24
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • 10.1198/016214501753382273 1073.62547 1946581
    • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 25
    • 80052694528 scopus 로고    scopus 로고
    • SparseNet: Coordinate descent with nonconvex penalties
    • 10.1198/jasa.2011.tm09738 1229.62091 2894769
    • Mazumder, R., Friedman, J. H., & Hastie, T. (2011). SparseNet: coordinate descent with nonconvex penalties. Journal of the American Statistical Association, 106(495), 1125-1138.
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.495 , pp. 1125-1138
    • Mazumder, R.1    Friedman, J.H.2    Hastie, T.3
  • 27
    • 84859858172 scopus 로고    scopus 로고
    • Bayesian hyper-lassos with non-convex penalization
    • 10.1111/j.1467-842X.2011.00641.x 2910027
    • Griffin, J. E., & Brown, P. J. (2011). Bayesian hyper-lassos with non-convex penalization. Australian & New Zealand Journal of Statistics, 53(4), 423-442.
    • (2011) Australian & New Zealand Journal of Statistics , vol.53 , Issue.4 , pp. 423-442
    • Griffin, J.E.1    Brown, P.J.2
  • 28
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • 1222.62008 2274449
    • Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. Journal of Machine Learning Research, 7, 2541-2563.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 29
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • 10.1109/TIT.2005.858979 1264.94121 2243152
    • Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203-4215.
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 30
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • 10.1109/TIT.2006.871582 1288.94016 2241189
    • Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289-1306.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.