메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 1083-1086

Y-means: A clustering method for intrusion detection

Author keywords

Clustering; Intrusion detection; K means; Outlier

Indexed keywords

BANDWIDTH; HEURISTIC METHODS; INFORMATION TECHNOLOGY;

EID: 0141540496     PISSN: 08407789     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (155)

References (7)
  • 1
    • 0141723181 scopus 로고    scopus 로고
    • KDD Cup 1999 Data. University of California, Irvine, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999.
    • (1999) KDD Cup 1999 Data
  • 4
    • 0034819175 scopus 로고    scopus 로고
    • J-means: A new local search heuristic for minimum sum-of-squares clustering
    • P. Hansen and N. Mladenovic. J-means: a new local search heuristic for minimum sum-of-squares clustering. Pattern Recognition, 34(2):405-413, 2002.
    • (2002) Pattern Recognition , vol.34 , Issue.2 , pp. 405-413
    • Hansen, P.1    Mladenovic, N.2
  • 7
    • 0003681739 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics. Applied probability and statistics, New York
    • P. Rousseeuw and A. Leroy. Robust Regression and Out-lier Detection. Wiley Series in Probability and Mathematical Statistics. Applied probability and statistics, New York, 1987.
    • (1987) Robust Regression and Out-lier Detection
    • Rousseeuw, P.1    Leroy, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.