메뉴 건너뛰기




Volumn 79, Issue 9, 2013, Pages 787-797

Selecting key features for remote sensing classification by using decision-theoretic rough set model

Author keywords

[No Author keywords available]

Indexed keywords

DECISION-THEORETIC ROUGH SET MODELS; FEATURE MEASUREMENT; FEATURE SELECTION ALGORITHM; LAND-COVER CLASSIFICATION; LANDSAT TM DATA; MISCLASSIFICATIONS; REMOTE SENSING CLASSIFICATION; TRAINING SAMPLE;

EID: 84883828442     PISSN: 00991112     EISSN: None     Source Type: Journal    
DOI: 10.14358/PERS.79.9.787     Document Type: Article
Times cited : (7)

References (60)
  • 1
    • 84857153751 scopus 로고    scopus 로고
    • Accuracy assessment of burned area products in the Orinoco basin
    • Anaya, J.A., and E. Chuvieco, 2012. Accuracy assessment of burned area products in the Orinoco basin, Photogrammetric Engineering & Remote Sensing, 78(1):53-60.
    • (2012) Photogrammetric Engineering & Remote Sensing , vol.78 , Issue.1 , pp. 53-60
    • Anaya, J.A.1    Chuvieco, E.2
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural-net learning
    • Battiti, R., 1994. Using mutual information for selecting features in supervised neural-net learning, IEEE Transactions on Neural Networks, 5(4):537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 3
    • 0035502119 scopus 로고    scopus 로고
    • Reducts within the variable precision rough sets model: A further investigation
    • Beynon, M., 2001. Reducts within the variable precision rough sets model: A further investigation, European Journal of Operational Research, 134(3):592-605.
    • (2001) European Journal of Operational Research , vol.134 , Issue.3 , pp. 592-605
    • Beynon, M.1
  • 9
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash, M., and H.A. Liu, 2003. Consistency-based search in feature selection, Artificial Intelligence, 151(1-2):155-176.
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.A.2
  • 13
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G.M., 2002. Status of land cover classification accuracy assessment, Remote Sensing of Environment, 80:185-201.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 14
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curseof-dimensionality
    • Friedman, J.H., 1997. On bias, variance, 0/1-loss, and the curseof-dimensionality, Data Mining and Knowledge Discovery, 1(1):55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 15
    • 0022883022 scopus 로고
    • The general employee scheduling problem-An integration of MS and AI
    • Glover, F., and C. McMillan, 1986. The general employee scheduling problem-An integration of MS and AI, Computers & Operations Research, 13(5):563-573.
    • (1986) Computers & Operations Research , vol.13 , Issue.5 , pp. 563-573
    • Glover, F.1    McMillan, C.2
  • 20
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Hu, Q.H., D.R. Yu, J.F. Liu, and C.X. Wu, 2008. Neighborhood rough set based heterogeneous feature subset selection, Information Sciences, 178(18):3577-3594.
    • (2008) Information Sciences , vol.178 , Issue.18 , pp. 3577-3594
    • Hu, Q.H.1    Yu, D.R.2    Liu, J.F.3    Wu, C.X.4
  • 22
    • 0029310113 scopus 로고
    • Learning in relational databases: A rough set approach
    • Hu, X., and N. Cercone, 1995. Learning in relational databases: A rough set approach, Computational Intelligence, 11(3):323-338.
    • (1995) Computational Intelligence , vol.11 , Issue.3 , pp. 323-338
    • Hu, X.1    Cercone, N.2
  • 23
    • 0029310113 scopus 로고
    • Learning in relational databases-A rough set approach
    • Hu, X.H., and N. Cercone, 1995. Learning in relational databases-A rough set approach, Computational intelligence, 11(2):323-338.
    • (1995) Computational intelligence , vol.11 , Issue.2 , pp. 323-338
    • Hu, X.H.1    Cercone, N.2
  • 25
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • Jensen, R., and Q. Shen, 2004. Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches, IEEE Transactions on Knowledge and Data Engineering, 16(12):1457-1471.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 27
    • 70449365800 scopus 로고    scopus 로고
    • Delineating compositionally different dykes in the Uluksla Basin (Central Anatolia, Turkey) using computer-enhanced multispectral remote sensing data
    • Kalelioglu, O., K. Zorlu, M.A. Kurt, M. Gul, and C. Guler, 2009. Delineating compositionally different dykes in the Uluksla Basin (Central Anatolia, Turkey) using computer-enhanced multispectral remote sensing data, International Journal of Remote Sensing, 30(11):2997-3011.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.11 , pp. 2997-3011
    • Kalelioglu, O.1    Zorlu, K.2    Kurt, M.A.3    Gul, M.4    Guler, C.5
  • 28
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, 1983. Optimization by simulated annealing, Science, 220(4598):671-680.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 29
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., and G.H. John, 1997. Wrappers for feature subset selection, Artificial Intelligence, 97(1-2):273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 30
    • 67650730065 scopus 로고    scopus 로고
    • Applying narrowband remote-sensing reflectance models to wideband data
    • Lee, Z.P., 2009. Applying narrowband remote-sensing reflectance models to wideband data, Applied Optics, 48(17):3177-3183.
    • (2009) Applied Optics , vol.48 , Issue.17 , pp. 3177-3183
    • Lee, Z.P.1
  • 31
    • 31544447992 scopus 로고    scopus 로고
    • Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS-A case study in the upper reaches of Minjiang River, China
    • Li, A.N., A.S. Wang, S.L. Liang, W.C. Zhou, 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS-A case study in the upper reaches of Minjiang River, China, Ecological Modelling, 192:175-187.
    • (2006) Ecological Modelling , vol.192 , pp. 175-187
    • Li, A.N.1    Wang, A.S.2    Liang, S.L.3    Zhou, W.C.4
  • 32
    • 0032442323 scopus 로고    scopus 로고
    • The influence of geographic sampling methods on vegetation map accuracy evaluation in a swampy environment
    • Lo, C.P., and L.J. Watson, 1998. The influence of geographic sampling methods on vegetation map accuracy evaluation in a swampy environment, Photogrammetric Engineering & Remote Sensing, 64(12):1189-1200.
    • (1998) Photogrammetric Engineering & Remote Sensing , vol.64 , Issue.12 , pp. 1189-1200
    • Lo, C.P.1    Watson, L.J.2
  • 39
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Pawlak, Z., and A. Skowron, 2007. Rudiments of rough sets, Information Sciences, 177(1):3-27.
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 40
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H.C., F.H. Long, and C. Ding, 2005. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 41
    • 28844476718 scopus 로고    scopus 로고
    • Land use and climate change
    • Pielke, R.A. Sr., 2005. Land use and climate change, Science, 310:1625-1626.
    • (2005) Science , vol.310 , pp. 1625-1626
    • Pielke Sr., R.A.1
  • 43
    • 84947801618 scopus 로고    scopus 로고
    • Induction of Strong Feature Subsets
    • (J.Z.J. Komorowski, editor), Springer-Verlag-Berlin
    • Quafafou, M., and M. Boussouf, 1997. Induction of Strong Feature Subsets, Principles of Data Mining and Knowledge Discovery (J.Z.J. Komorowski, editor), Springer-Verlag-Berlin, 33, pp. 384-392.
    • (1997) Principles of Data Mining and Knowledge Discovery , vol.33 , pp. 384-392
    • Quafafou, M.1    Boussouf, M.2
  • 44
    • 0031732112 scopus 로고    scopus 로고
    • Use of Landsat Thematic Mapper data to assess seasonal rangeland changes in the southeast Kalahari, Botswana
    • Ringrose, S., S. Musisi-Nkambwe, T. Coleman, D. Nellis, and C. Bussing, 1999. Use of Landsat Thematic Mapper data to assess seasonal rangeland changes in the southeast Kalahari, Botswana, Environmental Management, 23(1):125-138.
    • (1999) Environmental Management , vol.23 , Issue.1 , pp. 125-138
    • Ringrose, S.1    Musisi-Nkambwe, S.2    Coleman, T.3    Nellis, D.4    Bussing, C.5
  • 45
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • Robnik-Sikonja, M., and I. Kononenko, 2003. Theoretical and empirical analysis of relieff and rrelieff, Machine Learning, 53(1-2):23-69.
    • (2003) Machine Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 47
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • Shashahani, B.M., and D.A. Landgrebe, 1994. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon, IEEE Transactions on Geoscience and Remote Sensing, 32(5):1087-1095.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shashahani, B.M.1    Landgrebe, D.A.2
  • 49
    • 39749185627 scopus 로고    scopus 로고
    • Sub-pixel confusionuncertainty matrix for assessing soft classifications
    • Silván-Cárdenas, J.L., and L. Wang, 2008. Sub-pixel confusionuncertainty matrix for assessing soft classifications, Remote Sensing of Environment, 112:1081-1095.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 1081-1095
    • Silván-Cárdenas, J.L.1    Wang, L.2
  • 50
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • Slezak, D., 2002. Approximate entropy reducts, Fundamenta Informaticae, 53(3-4):365-390.
    • (2002) Fundamenta Informaticae , vol.53 , Issue.3-4 , pp. 365-390
    • Slezak, D.1
  • 52
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by nonparametric mutual information maximization
    • Torkkola, K., 2003. Feature extraction by nonparametric mutual information maximization, Journal of Machine Learning Research, 3(7/8):1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.7-8 , pp. 1415-1438
    • Torkkola, K.1
  • 53
    • 78650567526 scopus 로고    scopus 로고
    • Detection thresholds for rare, spectrally unique targets within semiarid rangelands
    • Weber, K.T., and F. Chen, 2010. Detection thresholds for rare, spectrally unique targets within semiarid rangelands, Photogrammetric Engineering & Remote Sensing, 76(11):1253-1259.
    • (2010) Photogrammetric Engineering & Remote Sensing , vol.76 , Issue.11 , pp. 1253-1259
    • Weber, K.T.1    Chen, F.2
  • 54
    • 78649930823 scopus 로고    scopus 로고
    • Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets
    • Xie, F., Y. Lin, and W. Ren, 2011. Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets, Ecological Modelling, (222):232-240.
    • (2011) Ecological Modelling , vol.222 , pp. 232-240
    • Xie, F.1    Lin, Y.2    Ren, W.3
  • 55
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang, J., and H. Vasant, 1998. Feature subset selection using a genetic algorithm, IEEE Intelligent Systems, 13(2):44-49.
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Vasant, H.2
  • 57
    • 84555193300 scopus 로고    scopus 로고
    • Decision-theoretic rough set models
    • Yao, Y.Y., 2008. Decision-theoretic rough set models, Computer Science(Ji Suan Ji Ke Xue), 35(8A):7-8.
    • (2008) Computer Science(Ji Suan Ji Ke Xue) , vol.35 , Issue.8 A , pp. 7-8
    • Yao, Y.Y.1
  • 58
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Yao, Y.Y., and Y. Zhao, 2008. Attribute reduction in decision-theoretic rough set models, Information Sciences, 178(17):3356-3373.
    • (2008) Information Sciences , vol.178 , Issue.17 , pp. 3356-3373
    • Yao, Y.Y.1    Zhao, Y.2
  • 59
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., and H. Liu, 2004. Efficient feature selection via analysis of relevance and redundancy, Journal of Machine Learning Research, 5:1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.