메뉴 건너뛰기




Volumn 45, Issue 1, 2013, Pages

Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BAYESIAN ANALYSIS; CATTLE; COMPUTER SIMULATION; DATA PROCESSING; ERROR ANALYSIS; MOLECULAR ANALYSIS; NUMERICAL MODEL; PREDICTION;

EID: 84883641328     PISSN: 0999193X     EISSN: 12979686     Source Type: Journal    
DOI: 10.1186/1297-9686-45-34     Document Type: Article
Times cited : (48)

References (39)
  • 1
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Prediction of total genetic value using genome-wide dense marker maps. Meuwissen THE, Hayes BJ, Goddard ME, Genetics 2001 157 1819 1829 11290733 (Pubitemid 32298846)
    • (2001) Genetics , vol.157 , Issue.4 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 3
    • 70349885499 scopus 로고    scopus 로고
    • An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions
    • 10.1093/bioinformatics/btp435 19608708
    • An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions. Miller DJ, Zhang Y, Yu G, Liu Y, Chen L, Langefeld CD, Herrington D, Wang Y, Bioinformatics 2009 25 2478 2485 10.1093/bioinformatics/btp435 19608708
    • (2009) Bioinformatics , vol.25 , pp. 2478-2485
    • Miller, D.J.1    Zhang, Y.2    Yu, G.3    Liu, Y.4    Chen, L.5    Langefeld, C.D.6    Herrington, D.7    Wang, Y.8
  • 4
    • 84885431978 scopus 로고    scopus 로고
    • Artificial neural networks for linkage analysis of quantitative gene expression phenotypes and evaluation of gene × gene interactions
    • 10.1186/1753-6561-1-s1-s47 18466546
    • Artificial neural networks for linkage analysis of quantitative gene expression phenotypes and evaluation of gene × gene interactions. Liu Y, Duan W, Paschall J, Saccone NL, BMC Proc 2007 1 47 10.1186/1753-6561-1-s1-s47 18466546
    • (2007) BMC Proc , vol.1 , pp. 1947
    • Liu, Y.1    Duan, W.2    Paschall, J.3    Saccone, N.L.4
  • 5
    • 84866530511 scopus 로고    scopus 로고
    • Parallel Markov chain Monte Carlo - Bridging the gap to high-performance Bayesian computation in animal breeding and genetics
    • 10.1186/1297-9686-44-29 23009363
    • Parallel Markov chain Monte Carlo-bridging the gap to high-performance Bayesian computation in animal breeding and genetics. Wu XL, Sun C, Beissinger TM, Rosa GJM, Weigel KA, De L, Gatti N, Gianola D, Genet Sel Evol 2012 44 29 10.1186/1297-9686-44-29 23009363
    • (2012) Genet Sel Evol , vol.44 , pp. 29
    • Wu, X.L.1    Sun, C.2    Beissinger, T.M.3    Rosa, G.J.M.4    Weigel, K.A.5    De, L.6    Gatti, N.7    Gianola, D.8
  • 6
    • 70350136780 scopus 로고    scopus 로고
    • Additive genetic variability and the Bayesian alphabet
    • 10.1534/genetics.109.103952 19620397
    • Additive genetic variability and the Bayesian alphabet. Gianola D, Delos Campos G, Hill WG, Manfredi E, Fernando R, Genetics 2009 183 347 363 10.1534/genetics.109.103952 19620397
    • (2009) Genetics , vol.183 , pp. 347-363
    • Gianola, D.1    Delos Campos, G.2    Hill, W.G.3    Manfredi, E.4    Fernando, R.5
  • 7
    • 79956199958 scopus 로고    scopus 로고
    • Extension of the Bayesian alphabet for genomic selection
    • 10.1186/1471-2105-12-186 21605355
    • Extension of the Bayesian alphabet for genomic selection. Habier H, Fernando RL, Kizilkaya K, Garrick JD, BMC Bioinformatics 2011 12 186 10.1186/1471-2105-12-186 21605355
    • (2011) BMC Bioinformatics , vol.12 , pp. 186
    • Habier, H.1    Fernando, R.L.2    Kizilkaya, K.3    Garrick, J.D.4
  • 8
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    • 10.1534/genetics.107.084285 18430950
    • Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Gianola D, van Kaam JBCHM, Genetics 2008 178 2289 2303 10.1534/genetics.107.084285 18430950
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    Van Kaam, J.2
  • 9
    • 69149088569 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation
    • 10.2527/jas.2008-1259 19213705
    • Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation. de los Campos G, Gianola D, Rosa GJM, J Anim Sci 2009 87 1883 1887 10.2527/jas.2008-1259 19213705
    • (2009) J Anim Sci , vol.87 , pp. 1883-1887
    • De Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3
  • 10
    • 77958480125 scopus 로고    scopus 로고
    • Radial basis function regression methods for predicting quantitative traits using SNP markers
    • 10.1017/S0016672310000157
    • Radial basis function regression methods for predicting quantitative traits using SNP markers. Long N, Gianola D, Rosa GMJ, Weigel KA, Kranis A, González-Recio O, Genet Res 2010 92 209 225 10.1017/S0016672310000157
    • (2010) Genet Res , vol.92 , pp. 209-225
    • Long, N.1    Gianola, D.2    Rosa, G.M.J.3    Weigel, K.A.4    Kranis, A.5    González- Recio, O.6
  • 11
    • 77957357792 scopus 로고    scopus 로고
    • A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait
    • 10.1007/s10709-010-9478-4 20737196
    • A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait. Gianola D, Wu XL, Manfredi E, Simianer H, Genetica 2010 138 959 977 10.1007/s10709-010-9478-4 20737196
    • (2010) Genetica , vol.138 , pp. 959-977
    • Gianola, D.1    Wu, X.L.2    Manfredi, E.3    Simianer, H.4
  • 13
    • 79959599369 scopus 로고    scopus 로고
    • Prediction of body mass index in mice using dense molecular markers and a regularized neural network
    • 10.1017/S0016672310000662
    • Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Okut H, Gianola D, Rosa JMR, Wiegel AK, Genet Res (Camb) 2011 93 189 201 10.1017/S0016672310000662
    • (2011) Genet Res (Camb) , vol.93 , pp. 189-201
    • Okut, H.1    Gianola, D.2    Rosa, J.M.R.3    Wiegel, A.K.4
  • 14
    • 80053594474 scopus 로고    scopus 로고
    • Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat
    • 21981731
    • Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. Gianola D, Okut H, Wiegel KA, Rosa GJM, BMC Genet 2011 12 87 21981731
    • (2011) BMC Genet , vol.12 , pp. 87
    • Gianola, D.1    Okut, H.2    Wiegel, K.A.3    Rosa, G.J.M.4
  • 15
    • 9144250273 scopus 로고    scopus 로고
    • Estimating UV erythema1 irradiance by means of neural networks
    • 10.1562/2004-03-12-RA-111.1 15362949
    • Estimating UV erythema1 irradiance by means of neural networks. Alados I, Mellado JA, Ramos F, Alados-Arboledas L, Photochem Photobiol 2004 80 351 358 10.1562/2004-03-12-RA-111.1 15362949
    • (2004) Photochem Photobiol , vol.80 , pp. 351-358
    • Alados, I.1    Mellado, J.A.2    Ramos, F.3    Alados-Arboledas, L.4
  • 17
    • 84885423343 scopus 로고    scopus 로고
    • American Angus Association® Carcass EPDs, 2013 [ http://www.angus. org/pub/Adv/CarcassEPDInsert.pdf ]
    • (2013)
  • 19
    • 79957598838 scopus 로고    scopus 로고
    • Effect of training algorithms on neural networks aided pavement diagnosis
    • Effect of training algorithms on neural networks aided pavement diagnosis. Gopalakrishnan K, Int J Eng Sci Technol 2010 2 83 92
    • (2010) Int J Eng Sci Technol , vol.2 , pp. 83-92
    • Gopalakrishnan, K.1
  • 21
    • 33645379655 scopus 로고    scopus 로고
    • Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks
    • 10.1016/j.fm.2005.09.011 16943052
    • Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks. Hajmeer M, Basheer I, Cliver DO, Food Microbiol 2006 23 561 570 10.1016/j.fm.2005.09.011 16943052
    • (2006) Food Microbiol , vol.23 , pp. 561-570
    • Hajmeer, M.1    Basheer, I.2    Cliver, D.O.3
  • 23
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • 10.1016/S0893-6080(05)80056-5
    • A scaled conjugate gradient algorithm for fast supervised learning. Møller FM, Neural Netw 1993 6 525 533 10.1016/S0893-6080(05)80056-5
    • (1993) Neural Netw , vol.6 , pp. 525-533
    • Møller, F.M.1
  • 25
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • DOI 10.1214/088342304000000099, Bayes Then and Now
    • Bayesian methods for neural networks and related models. Titterington DM, Statist Sci 2004 19 128 139 10.1214/088342304000000099 (Pubitemid 39056882)
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 128-139
    • Titterington, D.M.1
  • 27
    • 33646447689 scopus 로고    scopus 로고
    • Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North
    • 10.1007/s11270-005-9068-8
    • Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North. Xu M, Zeng G, Xu X, Huang G, Jiang R, Sun W, Water Air Soil Poll 2006 172 167 184 10.1007/s11270-005-9068-8
    • (2006) Water Air Soil Poll , vol.172 , pp. 167-184
    • Xu, M.1    Zeng, G.2    Xu, X.3    Huang, G.4    Jiang, R.5    Sun, W.6
  • 28
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • 10.1162/neco.1992.4.3.415
    • Bayesian interpolation. MacKay DJC, Neural Comput 1992 4 415 447 10.1162/neco.1992.4.3.415
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 29
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Review and case studies
    • DOI 10.1016/S0893-6080(00)00098-8, PII S0893608000000988
    • Bayesian approach for neural networks review and case studies. Lampinen J, Vehtari A, Neural Netw 2001 14 257 274 10.1016/S0893-6080(00)00098-8 11341565 (Pubitemid 32288857)
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 30
    • 33746043359 scopus 로고    scopus 로고
    • Bayesian learning for feed-forward neural network with application to proteomic data: The glycosylation sites detection of the epidermal growth Factor-like proteins associated with cancer as a case study
    • DOI 10.1007/11766247-10, Advances in Artificial Intelligence - 19th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2006, Proceedings
    • Bayesian learning for feedforward neural network with application to proteomic data: the glycosylation sites detection of the epidermal growth factor-like proteins associated with cancer as a case study. Shaneh A, Butler G, Canadian AI LNAI 4013 Berlin Heidelberg: Springer-Verlag, Lamontagne L, Marchand L, 2006 110 121 (Pubitemid 44077459)
    • (2006) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol.4013 , pp. 110-121
    • Shaneh, A.1    Butler, G.2
  • 33
    • 77949854404 scopus 로고    scopus 로고
    • Deregressing estimated breeding values and weighting information for genomic regression analyses
    • 10.1186/1297-9686-41-55 20043827
    • Deregressing estimated breeding values and weighting information for genomic regression analyses. Garrick DJ, Taylor JF, Fernando RL, Genet Sel Evol 2009 41 55 10.1186/1297-9686-41-55 20043827
    • (2009) Genet Sel Evol , vol.41 , pp. 55
    • Garrick, D.J.1    Taylor, J.F.2    Fernando, R.L.3
  • 34
    • 84858768247 scopus 로고    scopus 로고
    • Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs
    • 10.1186/1297-9686-43-38 22070746
    • Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Ostersen T, Christensen OF, Henryon M, Nielsen B, Su G, Madsen P, Genet Sel Evol 2011 43 38 10.1186/1297-9686-43-38 22070746
    • (2011) Genet Sel Evol , vol.43 , pp. 38
    • Ostersen, T.1    Christensen, O.F.2    Henryon, M.3    Nielsen, B.4    Su, G.5    Madsen, P.6
  • 35
    • 2942538155 scopus 로고    scopus 로고
    • Modelling blood-brain barrier partitioning using Bayesian neural nets
    • DOI 10.1016/j.jmgm.2004.03.010, PII S1093326304000257, Bioactive Discovery in the New Millennium
    • Modelling blood-brain barrier partitioning using Bayesian neural nets. Winkler DA, Burden FR, J Mol Graph Model 2004 22 499 505 10.1016/j.jmgm.2004.03. 010 15182809 (Pubitemid 38746575)
    • (2004) Journal of Molecular Graphics and Modelling , vol.22 , Issue.6 , pp. 499-505
    • Winkler, D.A.1    Burden, F.R.2
  • 36
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic value with semiparametric procedures
    • DOI 10.1534/genetics.105.049510
    • Genomic-assisted prediction of genetic value with semiparametric procedures. Gianola D, Fernando RL, Stella A, Genetics 2006 173 1761 1776 10.1534/genetics.105.049510 16648593 (Pubitemid 44127674)
    • (2006) Genetics , vol.173 , Issue.3 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.L.2    Stella, A.3
  • 37
    • 77958469463 scopus 로고    scopus 로고
    • Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction
    • 21029850
    • Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction. Moore HJ, Adv Genet 2010 72 101 116 21029850
    • (2010) Adv Genet , vol.72 , pp. 101-116
    • Moore, H.J.1
  • 39
    • 72449137120 scopus 로고    scopus 로고
    • The accuracy of genomic selection in Norwegian Red Cattle assessed by cross validation
    • 10.1534/genetics.109.107391 19704013
    • The accuracy of genomic selection in Norwegian Red Cattle assessed by cross validation. Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE, Genetics 2009 183 1119 1126 10.1534/genetics.109.107391 19704013
    • (2009) Genetics , vol.183 , pp. 1119-1126
    • Luan, T.1    Woolliams, J.A.2    Lien, S.3    Kent, M.4    Svendsen, M.5    Meuwissen, T.H.E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.