메뉴 건너뛰기




Volumn 93, Issue 3, 2011, Pages 189-201

Prediction of body mass index in mice using dense molecular markers and a regularized neural network

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; BODY MASS; GENE ACTIVITY; GENE FREQUENCY; GENOME; GENOTYPE; HAPLOTYPE; MOUSE; NONHUMAN; PERCEPTRON; PHENOTYPE; POSITIVE FEEDBACK; PREDICTION; QUANTITATIVE TRAIT; SINGLE NUCLEOTIDE POLYMORPHISM; ALGORITHM; ANIMAL; BIOLOGICAL MODEL; GENETIC MARKER; GENETICS; PREDICTIVE VALUE;

EID: 79959599369     PISSN: 00166723     EISSN: 14695073     Source Type: Journal    
DOI: 10.1017/S0016672310000662     Document Type: Article
Times cited : (58)

References (45)
  • 1
    • 58149223073 scopus 로고    scopus 로고
    • Bayesian regularization in a neural network model to estimate lines of code using function points
    • Aggarwal, K. K., Singh, Y., Chandra, P. & Puri, M. (2005). Bayesian regularization in a neural network model to estimate lines of code using function points. Journal of Computer Sciences 1, 505-509.
    • (2005) Journal of Computer Sciences , vol.1 , pp. 505-509
    • Aggarwal, K.K.1    Singh, Y.2    Chandra, P.3    Puri, M.4
  • 4
    • 57749100105 scopus 로고    scopus 로고
    • Prediction of the nutrient content in dairy manure using artificial neural network modeling
    • DOI 10.3168/jds.2007-0978
    • Chen, L. J., Cui, L. Y., Xing, L. & Han, L. J. (2008). Prediction of the nutrient content in dairy manure using artificial neural network modeling. Journal of Dairy Science 91, 4822-4829. (Pubitemid 352847772)
    • (2008) Journal of Dairy Science , vol.91 , Issue.12 , pp. 4822-4829
    • Chen, L.J.1    Cui, L.Y.2    Xing, L.3    Han, L.J.4
  • 5
    • 34547733493 scopus 로고    scopus 로고
    • Comparison of artificial neural network analysis with other multimarker methods for detecting genetic association
    • Curtis, D. (2007). Comparison of artificial neural network analysis with other multimarker methods for detecting genetic association. BMC Genetics 8, 49.
    • (2007) BMC Genetics , vol.8 , pp. 49
    • Curtis, D.1
  • 8
    • 65249140402 scopus 로고    scopus 로고
    • Novel approach for promoting the generalization ability of neural networks
    • Feng, N., Wang, F. & Qiu, Y. (2006). Novel approach for promoting the generalization ability of neural networks. International Journal of Signal Processing 2, 131-135.
    • (2006) International Journal of Signal Processing , vol.2 , pp. 131-135
    • Feng, N.1    Wang, F.2    Qiu, Y.3
  • 9
    • 33751032263 scopus 로고    scopus 로고
    • Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines
    • DOI 10.1111/j.1747-0285.2006.00435.x
    • Fernandez, M. & Caballero, J. (2006). Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines. Chemistry and Biology Drug Design 68, 201-212. (Pubitemid 44760245)
    • (2006) Chemical Biology and Drug Design , vol.68 , Issue.4 , pp. 201-212
    • Fernandez, M.1    Caballero, J.2
  • 11
    • 0036643803 scopus 로고    scopus 로고
    • NMR and Bayesian regularized neural network regression for impurity determination of 4-aminophenol
    • DOI 10.1016/S0731-7085(02)00086-9, PII S0731708502000869
    • Forshed, J., Anderson, O. F. & Jacobsson, P. S. (2002). NMR and Bayesian regularized neural network regression for impurity determination of 4-aminophenol. Journal of Pharmaceutical and Biomedical Analysis 29, 495-505. (Pubitemid 34607810)
    • (2002) Journal of Pharmaceutical and Biomedical Analysis , vol.29 , Issue.3 , pp. 495-505
    • Forshed, J.1    Andersson, F.O.2    Jacobsson, S.P.3
  • 12
    • 0035391107 scopus 로고    scopus 로고
    • Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging
    • DOI 10.1109/72.935086, PII S1045922701050202
    • Gencay, R. & Qi, M. (2001). Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks 12, 726-734. (Pubitemid 32732815)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 726-734
    • Gencay, R.1    Qi, M.2
  • 13
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases
    • Guha, R., Stanton, T. D. & Jurs, C. P. (2005). Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. Journal of Chemical Information and Modelling 45, 109-1121.
    • (2005) Journal of Chemical Information and Modelling , vol.45 , pp. 109-1121
    • Guha, R.1    Stanton, T.D.2    Jurs, C.P.3
  • 14
    • 33645379655 scopus 로고    scopus 로고
    • Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks
    • Hajmeer, M., Basheer, I. & Cliver, D. O. (2006). Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks. Food Microbiology 23, 561-70.
    • (2006) Food Microbiology , vol.23 , pp. 561-570
    • Hajmeer, M.1    Basheer, I.2    Cliver, D.O.3
  • 15
    • 0003413187 scopus 로고    scopus 로고
    • 2nd edn. Upper Saddle River, NJ: Prentice-Hall. A Comprehensive Foundation 3rd edit : Prentice-Hall
    • Haykin, S. (2008). Neural Networks: Comprehensive Foundation. 2nd edn. Upper Saddle River, NJ: Prentice-Hall. A Comprehensive Foundation 3rd edit : Prentice-Hall.
    • (2008) Neural Networks: Comprehensive Foundation
    • Haykin, S.1
  • 16
    • 0037438909 scopus 로고    scopus 로고
    • Neural network modelling of coastal algal blooms
    • Joseph, H., Huang, W. L. & Dickman, M. (2003). Neural network modelling of coastal algal blooms. Ecology Modelling 159, 179-201.
    • (2003) Ecology Modelling , vol.159 , pp. 179-201
    • Joseph, H.1    Huang, W.L.2    Dickman, M.3
  • 17
    • 55449095941 scopus 로고    scopus 로고
    • Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex
    • Kelemen, A. & Liang, Y. (2008). Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex. Diseases Statistics Surveys 2, 43-60.
    • (2008) Diseases Statistics Surveys , vol.2 , pp. 43-60
    • Kelemen, A.1    Liang, Y.2
  • 18
    • 4544289385 scopus 로고    scopus 로고
    • Improving performance in pulse radar detection using Bayesian regularization for neural network training
    • Kumar, P., Merchant, S. N. & Desai, U. B. (2004). Improving performance in pulse radar detection using Bayesian regularization for neural network training. Digital Signal Processing 14, 438-448.
    • (2004) Digital Signal Processing , vol.14 , pp. 438-448
    • Kumar, P.1    Merchant, S.N.2    Desai, U.B.3
  • 19
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Review and case studies
    • DOI 10.1016/S0893-6080(00)00098-8, PII S0893608000000988
    • Lampinen, J. & Vehtari, A. (2001). Bayesian approach for neural networks review and case studies. Neural Networks 14, 257-274. (Pubitemid 32288857)
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 21
    • 36849010721 scopus 로고    scopus 로고
    • Machine learning classification procedure for selecting SNPs in genomic selection: Application to early mortality in broilers
    • DOI 10.1111/j.1439-0388.2007.00694.x
    • Long, N., Gianola, D., Rosa, G. J. M., Weigel, K. A. & Avendan, S. (2007). Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. Journal of Animal Breeding and Genetics 124, 377-389. (Pubitemid 350231130)
    • (2007) Journal of Animal Breeding and Genetics , vol.124 , Issue.6 , pp. 377-389
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Avendano, S.5
  • 22
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation 4, 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 23
    • 79959623318 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • MacKay, J. C. D. (1996). Comparison of approximate methods for handling hyperparameters. Neural Computation 8, 1-35.
    • (1996) Neural Computation , vol.8 , pp. 1-35
    • MacKay, J.C.D.1
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R. & Dandy, C. G. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15, 101-124. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 34250867328 scopus 로고    scopus 로고
    • Bayesian training of neural networks using genetic programming
    • Marwala, T. (2007). Bayesian training of neural networks using genetic programming. Pattern Recognition Letters 28, 1452-1458.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 1452-1458
    • Marwala, T.1
  • 27
    • 33646355194 scopus 로고    scopus 로고
    • Finding the molecular basis of complex genetic variation in humans and mice
    • Mott, R. (2006). Finding the molecular basis of complex genetic variation in humans and mice. Philosophical Transactions 361, 393-401.
    • (2006) Philosophical Transactions , vol.361 , pp. 393-401
    • Mott, R.1
  • 29
    • 27944458928 scopus 로고    scopus 로고
    • Exhaustive exploring using artificial neural network for identification of SNPs combination related to Helicobacter pylori infection susceptibility
    • DOI 10.1273/cbij.5.15
    • Mutoh, H., Hamajima, N., Tajima, K., Kobayahsi, T. & Honda, H. (2005). Exhaustive exploring using artificial neural network for identification of SNPs combination to Heliobacter pylori infection susceptibility. Chem-Bio Informatics 5, 15-26. (Pubitemid 41671969)
    • (2005) Chem-Bio Informatics Journal , vol.5 , Issue.2 , pp. 15-26
    • Mutoh, H.1    Hamajima, N.2    Tajima, K.3    Kobayashi, T.4    Honda, H.5
  • 30
    • 0025536870 scopus 로고
    • Improving the learning speed of two-layer neural networks by choosing initial values of the adaptive weights
    • Nguyen, D. & Widrow, B. (1990). Improving the learning speed of two-layer neural networks by choosing initial values of the adaptive weights. Proceedings of International Joint Conference on Neural Networks 3, 21-26.
    • (1990) Proceedings of International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 33
    • 79959614459 scopus 로고    scopus 로고
    • SAS/STAT1(2009). Version 9.13. Cary, NC: SAS Institute Inc
    • SAS/STAT1(2009). Version 9.13. Cary, NC: SAS Institute Inc.
  • 34
    • 33746043359 scopus 로고    scopus 로고
    • Bayesian learning for feed-forward neural network with application to proteomic data: The glycosylation sites detection of the epidermal growth factor-like proteins associated with cancer as a case study
    • 2006 (ed. L. Lamontagne & M. Marchand), Berlin-Heiddelberg: Springer-Verleg
    • Shaneh, A. & Butler, G. (2006). Bayesian learning for feed-forward neural network with application to proteomic data: the glycosylation sites detection of the epidermal growth factor-like proteins associated with cancer as a case study. In Canadian AI LNAI 4013, 2006 (ed. L. Lamontagne & M. Marchand), pp. 110-121. Berlin-Heiddelberg: Springer-Verleg.
    • (2006) Canadian AI LNAI , vol.4013 , pp. 110-121
    • Shaneh, A.1    Butler, G.2
  • 35
    • 0345117343 scopus 로고    scopus 로고
    • Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-Glucuronosyltransferase isoforms
    • Sorich, M. J., Miners, J. O., Ross, A. M., Winker, D. A., Burden, F. R.&Smith, P. A. (2003). Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-Glucuronosyltransferase isoforms. Journal of Chemical Information and Computer Sciences 43, 2019-2024.
    • (2003) Journal of Chemical Information and Computer Sciences , vol.43 , pp. 2019-2024
    • Sorich, M.J.1    Miners, J.O.2    Ross, A.M.3    Winker, D.A.4    Burden, F.R.5    Smith, P.A.6
  • 36
    • 0029754435 scopus 로고    scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg, H. H. (1996). A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks 7, 56-72.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 37
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • Titterington, D. M. (2004). Bayesian methods for neural networks and related models. Statistical Science 19, 128-139.
    • (2004) Statistical Science , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 38
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu, J. V. (1997). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology 49, 1225-1231.
    • (1997) Journal of Clinical Epidemiology , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 39
    • 0035756174 scopus 로고    scopus 로고
    • Highthroughput identification, database storage and analysis of SNPs in EST sequences
    • Useche, F., Hanafey, G. G. & Rafalski, A. (2001). Highthroughput identification, database storage and analysis of SNPs in EST sequences. Genome Informatics 12, 194-203.
    • (2001) Genome Informatics , vol.12 , pp. 194-203
    • Useche, F.1    Hanafey, G.G.2    Rafalski, A.3
  • 42
    • 78649277825 scopus 로고    scopus 로고
    • Predictive ability of subsets of single nucleotide polymorphisms with and without parent average in US Holsteins
    • Vazquez, A. I., Rosa, G. J. M., Weigel, K. A., de los Campos, G., Gianola, G. & Allison, D. B. (2010). Predictive ability of subsets of single nucleotide polymorphisms with and without parent average in US Holsteins. Journal of Dairy Sciences 93(12), 5942-5949.
    • (2010) Journal of Dairy Sciences , vol.93 , Issue.12 , pp. 5942-5949
    • Vazquez, A.I.1    Rosa, G.J.M.2    Weigel, K.A.3    De Los Campos, G.4    Gianola, G.5    Allison, D.B.6
  • 44
    • 2942538155 scopus 로고    scopus 로고
    • Modelling blood-brain barrier partitioning using Bayesian neural nets
    • DOI 10.1016/j.jmgm.2004.03.010, PII S1093326304000257, Bioactive Discovery in the New Millennium
    • Winkler, D. A. & Burden, F. R. (2004). Modelling blood-brain barrier partitioning using Bayesian neural nets. Journal of Molecular Graphics and Modelling 22, 499-505. (Pubitemid 38746575)
    • (2004) Journal of Molecular Graphics and Modelling , vol.22 , Issue.6 , pp. 499-505
    • Winkler, D.A.1    Burden, F.R.2
  • 45
    • 33646447689 scopus 로고    scopus 로고
    • Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North
    • Xu, M., Zengi, G., Xu, X., Huang, G., Jiang, R. & Sun, W. (2006). Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North. Water, Air, and Soil Pollution 172, 167-184.
    • (2006) Water, Air, and Soil Pollution , vol.172 , pp. 167-184
    • Xu, M.1    Zengi, G.2    Xu, X.3    Huang, G.4    Jiang, R.5    Sun, W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.