메뉴 건너뛰기




Volumn 105, Issue 4, 2013, Pages 1045-1056

A Computational model of reactive oxygen species and redox balance in cardiac mitochondria

Author keywords

[No Author keywords available]

Indexed keywords

MULTIENZYME COMPLEX; REACTIVE OXYGEN METABOLITE;

EID: 84882973495     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2013.07.006     Document Type: Article
Times cited : (47)

References (82)
  • 1
    • 0036086130 scopus 로고    scopus 로고
    • Free radicals in the physiological control of cell function
    • W. Dröge Free radicals in the physiological control of cell function Physiol. Rev. 82 2002 47 95
    • (2002) Physiol. Rev. , vol.82 , pp. 47-95
    • Dröge, W.1
  • 2
    • 0030890196 scopus 로고    scopus 로고
    • Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium
    • C.P. Baines, M. Goto, and J.M. Downey Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium J. Mol. Cell. Cardiol. 29 1997 207 216
    • (1997) J. Mol. Cell. Cardiol. , vol.29 , pp. 207-216
    • Baines, C.P.1    Goto, M.2    Downey, J.M.3
  • 3
    • 0028239794 scopus 로고
    • The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents
    • V. Petronilli, and P. Costantini P. Bernardi The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents J. Biol. Chem. 269 1994 16638 16642
    • (1994) J. Biol. Chem. , vol.269 , pp. 16638-16642
    • Petronilli, V.1    Costantini, P.2    Bernardi, P.3
  • 4
    • 59649127713 scopus 로고    scopus 로고
    • Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling
    • L.-H. Xie, and F. Chen J.N. Weiss Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling Circ. Res. 104 2009 79 86
    • (2009) Circ. Res. , vol.104 , pp. 79-86
    • Xie, L.-H.1    Chen, F.2    Weiss, J.N.3
  • 5
    • 14644442283 scopus 로고    scopus 로고
    • Oxygen, oxidative stress, hypoxia, and heart failure
    • F.J. Giordano Oxygen, oxidative stress, hypoxia, and heart failure J. Clin. Invest. 115 2005 500 508
    • (2005) J. Clin. Invest. , vol.115 , pp. 500-508
    • Giordano, F.J.1
  • 6
    • 0037118663 scopus 로고    scopus 로고
    • Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: Roles of oxidative stress and inflammation
    • R. Nakamura, and K. Egashira A. Takeshita Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation Circulation 106 2002 362 367
    • (2002) Circulation , vol.106 , pp. 362-367
    • Nakamura, R.1    Egashira, K.2    Takeshita, A.3
  • 7
    • 33745202365 scopus 로고    scopus 로고
    • NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure
    • C.E. Murdoch, and M. Zhang A.M. Shah NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure Cardiovasc. Res. 71 2006 208 215
    • (2006) Cardiovasc. Res. , vol.71 , pp. 208-215
    • Murdoch, C.E.1    Zhang, M.2    Shah, A.M.3
  • 8
    • 0033588198 scopus 로고    scopus 로고
    • Mitochondrial electron transport complex i is a potential source of oxygen free radicals in the failing myocardium
    • T. Ide, and H. Tsutsui A. Takeshita Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium Circ. Res. 85 1999 357 363
    • (1999) Circ. Res. , vol.85 , pp. 357-363
    • Ide, T.1    Tsutsui, H.2    Takeshita, A.3
  • 9
    • 77953809992 scopus 로고    scopus 로고
    • Redox-optimized ROS balance: A unifying hypothesis
    • M.A. Aon, S. Cortassa, and B. O'Rourke Redox-optimized ROS balance: a unifying hypothesis Biochim. Biophys. Acta 1797 2010 865 877
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 865-877
    • Aon, M.A.1    Cortassa, S.2    O'Rourke, B.3
  • 10
    • 53549099939 scopus 로고    scopus 로고
    • 2+ uptake in myocytes from failing hearts restores energy supply and demand matching
    • 2+ uptake in myocytes from failing hearts restores energy supply and demand matching Circ. Res. 103 2008 279 288
    • (2008) Circ. Res. , vol.103 , pp. 279-288
    • Liu, T.1    O'Rourke, B.2
  • 11
    • 77950940176 scopus 로고    scopus 로고
    • + increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes
    • + increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes Circulation 121 2010 1606 1613
    • (2010) Circulation , vol.121 , pp. 1606-1613
    • Kohlhaas, M.1    Liu, T.2    Maack, C.3
  • 12
    • 24144493814 scopus 로고    scopus 로고
    • Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
    • R.D. Guzy, and B. Hoyos P.T. Schumacker Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing Cell Metab. 1 2005 401 408
    • (2005) Cell Metab. , vol.1 , pp. 401-408
    • Guzy, R.D.1    Hoyos, B.2    Schumacker, P.T.3
  • 14
    • 33646716659 scopus 로고    scopus 로고
    • The mechanism of superoxide production by NADH: Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
    • L. Kussmaul, and J. Hirst The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria Proc. Natl. Acad. Sci. USA 103 2006 7607 7612
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 7607-7612
    • Kussmaul, L.1    Hirst, J.2
  • 15
    • 79955977892 scopus 로고    scopus 로고
    • Superoxide is produced by the reduced flavin in mitochondrial complex I: A single, unified mechanism that applies during both forward and reverse electron transfer
    • K.R. Pryde, and J. Hirst Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer J. Biol. Chem. 286 2011 18056 18065
    • (2011) J. Biol. Chem. , vol.286 , pp. 18056-18065
    • Pryde, K.R.1    Hirst, J.2
  • 16
    • 33745628757 scopus 로고    scopus 로고
    • Generation of superoxide by the mitochondrial Complex i
    • V.G. Grivennikova, and A.D. Vinogradov Generation of superoxide by the mitochondrial Complex I Biochim. Biophys. Acta 1757 2006 553 561
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 553-561
    • Grivennikova, V.G.1    Vinogradov, A.D.2
  • 18
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • S.S. Korshunov, V.P. Skulachev, and A.A. Starkov High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria FEBS Lett. 416 1997 15 18
    • (1997) FEBS Lett. , vol.416 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 19
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • J.F. Turrens, and A. Boveris Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria Biochem. J. 191 1980 421 427
    • (1980) Biochem. J. , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 20
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • J. St-Pierre, and J.A. Buckingham M.D. Brand Topology of superoxide production from different sites in the mitochondrial electron transport chain J. Biol. Chem. 277 2002 44784 44790
    • (2002) J. Biol. Chem. , vol.277 , pp. 44784-44790
    • St-Pierre, J.1    Buckingham, J.A.2    Brand, M.D.3
  • 21
    • 70349904508 scopus 로고    scopus 로고
    • 2 release at mitochondrial complex I: Negative modulation by malate, positive by cyanide
    • 2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide J. Bioenerg. Biomembr. 41 2009 387 393
    • (2009) J. Bioenerg. Biomembr. , vol.41 , pp. 387-393
    • Zoccarato, F.1    Cavallini, L.2    Alexandre, A.3
  • 22
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH: Ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
    • A.J. Lambert, and M.D. Brand Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane Biochem. J. 382 2004 511 517
    • (2004) Biochem. J. , vol.382 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 23
    • 33751574953 scopus 로고    scopus 로고
    • Bovine complex i is a complex of 45 different subunits
    • J. Carroll, and I.M. Fearnley J.E. Walker Bovine complex I is a complex of 45 different subunits J. Biol. Chem. 281 2006 32724 32727
    • (2006) J. Biol. Chem. , vol.281 , pp. 32724-32727
    • Carroll, J.1    Fearnley, I.M.2    Walker, J.E.3
  • 24
    • 80052068980 scopus 로고    scopus 로고
    • Structure of the membrane domain of respiratory complex i
    • R.G. Efremov, and L.A. Sazanov Structure of the membrane domain of respiratory complex I Nature 476 2011 414 420
    • (2011) Nature , vol.476 , pp. 414-420
    • Efremov, R.G.1    Sazanov, L.A.2
  • 25
    • 80052334347 scopus 로고    scopus 로고
    • Tracing the trail of protons through complex i of the mitochondrial respiratory chain
    • A. Mourier, and N.-G. Larsson Tracing the trail of protons through complex I of the mitochondrial respiratory chain PLoS Biol. 9 2011 e1001129
    • (2011) PLoS Biol. , vol.9 , pp. 1001129
    • Mourier, A.1    Larsson, N.-G.2
  • 26
    • 80051601805 scopus 로고    scopus 로고
    • A two-state stabilization-change mechanism for proton-pumping complex i
    • U. Brandt A two-state stabilization-change mechanism for proton-pumping complex I Biochim. Biophys. Acta 1807 2011 1364 1369
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 1364-1369
    • Brandt, U.1
  • 27
    • 84863738048 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
    • B. Kadenbach, Springer New York
    • S. Dröse, and U. Brandt Molecular mechanisms of superoxide production by the mitochondrial respiratory chain B. Kadenbach, Mitochondrial Oxidative Phosphorylation 2012 Springer New York 145 169
    • (2012) Mitochondrial Oxidative Phosphorylation , pp. 145-169
    • Dröse, S.1    Brandt, U.2
  • 28
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH: Ubiquinone oxidoreductase (complex I)
    • A.J. Lambert, and M.D. Brand Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I) J. Biol. Chem. 279 2004 39414 39420
    • (2004) J. Biol. Chem. , vol.279 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 30
    • 34447105454 scopus 로고    scopus 로고
    • Exposing the complex III Qo semiquinone radical
    • H. Zhang, and A. Osyczka C.C. Moser Exposing the complex III Qo semiquinone radical Biochim. Biophys. Acta 1767 2007 883 887
    • (2007) Biochim. Biophys. Acta , vol.1767 , pp. 883-887
    • Zhang, H.1    Osyczka, A.2    Moser, C.C.3
  • 31
    • 10344221083 scopus 로고    scopus 로고
    • Complex III releases superoxide to both sides of the inner mitochondrial membrane
    • F.L. Muller, Y. Liu, and H. Van Remmen Complex III releases superoxide to both sides of the inner mitochondrial membrane J. Biol. Chem. 279 2004 49064 49073
    • (2004) J. Biol. Chem. , vol.279 , pp. 49064-49073
    • Muller, F.L.1    Liu, Y.2    Van Remmen, H.3
  • 32
    • 0037458619 scopus 로고    scopus 로고
    • Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol
    • D. Han, and F. Antunes E. Cadenas Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol J. Biol. Chem. 278 2003 5557 5563
    • (2003) J. Biol. Chem. , vol.278 , pp. 5557-5563
    • Han, D.1    Antunes, F.2    Cadenas, E.3
  • 34
    • 0035514075 scopus 로고    scopus 로고
    • Kinetic modeling of energy metabolism and superoxide generation in hepatocyte mitochondria
    • O.V. Demin, and I.I. Goryanin H.V. Westerhoff Kinetic modeling of energy metabolism and superoxide generation in hepatocyte mitochondria Mol. Biol. (Mosk.) 35 2001 940 949
    • (2001) Mol. Biol. (Mosk.) , vol.35 , pp. 940-949
    • Demin, O.V.1    Goryanin, I.I.2    Westerhoff, H.V.3
  • 38
    • 0020424165 scopus 로고
    • Regulation of cellular energy metabolism
    • M. Erecińska, and D.F. Wilson Regulation of cellular energy metabolism J. Membr. Biol. 70 1982 1 14
    • (1982) J. Membr. Biol. , vol.70 , pp. 1-14
    • Erecińska, M.1    Wilson, D.F.2
  • 39
    • 0029008947 scopus 로고
    • Insulin, ketone bodies, and mitochondrial energy transduction
    • K. Sato, and Y. Kashiwaya R.L. Veech Insulin, ketone bodies, and mitochondrial energy transduction FASEB J. 9 1995 651 658
    • (1995) FASEB J. , vol.9 , pp. 651-658
    • Sato, K.1    Kashiwaya, Y.2    Veech, R.L.3
  • 40
    • 0015072381 scopus 로고
    • Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages
    • S. Mintz, and E.D. Robin Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages J. Clin. Invest. 50 1971 1181 1186
    • (1971) J. Clin. Invest. , vol.50 , pp. 1181-1186
    • Mintz, S.1    Robin, E.D.2
  • 42
    • 0037726805 scopus 로고    scopus 로고
    • Intrinsic and extrinsic uncoupling of oxidative phosphorylation
    • B. Kadenbach Intrinsic and extrinsic uncoupling of oxidative phosphorylation Biochim. Biophys. Acta 1604 2003 77 94
    • (2003) Biochim. Biophys. Acta , vol.1604 , pp. 77-94
    • Kadenbach, B.1
  • 43
    • 79961210608 scopus 로고    scopus 로고
    • The role of mitochondrial membrane potential in ischemic heart failure
    • B. Kadenbach, and R. Ramzan S. Vogt The role of mitochondrial membrane potential in ischemic heart failure Mitochondrion 11 2011 700 706
    • (2011) Mitochondrion , vol.11 , pp. 700-706
    • Kadenbach, B.1    Ramzan, R.2    Vogt, S.3
  • 45
    • 0001268089 scopus 로고
    • Carbohydrate and fatty acid metabolism
    • R.M. Berne, N. Sperelakis, R. Geiger, American Physiological Society Bethesda, MD
    • P. Randle, and P. Tubbs Carbohydrate and fatty acid metabolism R.M. Berne, N. Sperelakis, R. Geiger, Handbook of Physiology 1979 American Physiological Society Bethesda, MD 805 844
    • (1979) Handbook of Physiology , pp. 805-844
    • Randle, P.1    Tubbs, P.2
  • 46
    • 33751072935 scopus 로고    scopus 로고
    • Bioenergetics and the formation of mitochondrial reactive oxygen species
    • V. Adam-Vizi, and C. Chinopoulos Bioenergetics and the formation of mitochondrial reactive oxygen species Trends Pharmacol. Sci. 27 2006 639 645
    • (2006) Trends Pharmacol. Sci. , vol.27 , pp. 639-645
    • Adam-Vizi, V.1    Chinopoulos, C.2
  • 47
    • 0033381362 scopus 로고    scopus 로고
    • Cooperation of a "reactive oxygen cycle" with the Q cycle and the proton cycle in the respiratory chain - Superoxide generating and cycling mechanisms in mitochondria
    • S.S. Liu Cooperation of a "reactive oxygen cycle" with the Q cycle and the proton cycle in the respiratory chain - superoxide generating and cycling mechanisms in mitochondria J. Bioenerg. Biomembr. 31 1999 367 376
    • (1999) J. Bioenerg. Biomembr. , vol.31 , pp. 367-376
    • Liu, S.S.1
  • 48
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • J.F. Turrens, A. Alexandre, and A.L. Lehninger Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria Arch. Biochem. Biophys. 237 1985 408 414
    • (1985) Arch. Biochem. Biophys. , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 49
    • 79960310229 scopus 로고    scopus 로고
    • Mitochondrial energetics, pH regulation, and ion dynamics: A computational-experimental approach
    • A.-C. Wei, and M.A. Aon S. Cortassa Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach Biophys. J. 100 2011 2894 2903
    • (2011) Biophys. J. , vol.100 , pp. 2894-2903
    • Wei, A.-C.1    Aon, M.A.2    Cortassa, S.3
  • 50
    • 57649219323 scopus 로고    scopus 로고
    • The role of external and matrix pH in mitochondrial reactive oxygen species generation
    • V.A. Selivanov, and J.A. Zeak T.V. Votyakova The role of external and matrix pH in mitochondrial reactive oxygen species generation J. Biol. Chem. 283 2008 29292 29300
    • (2008) J. Biol. Chem. , vol.283 , pp. 29292-29300
    • Selivanov, V.A.1    Zeak, J.A.2    Votyakova, T.V.3
  • 51
    • 0018837597 scopus 로고
    • Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria
    • E. Cadenas, and A. Boveris Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria Biochem. J. 188 1980 31 37
    • (1980) Biochem. J. , vol.188 , pp. 31-37
    • Cadenas, E.1    Boveris, A.2
  • 52
    • 84882973501 scopus 로고    scopus 로고
    • Reference deleted in proof
    • Reference deleted in proof.
  • 53
    • 0027990677 scopus 로고
    • Thermodynamic analysis of flavin in mitochondrial NADH: Ubiquinone oxidoreductase (complex I)
    • V.D. Sled, and N.I. Rudnitzky T. Ohnishi Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I) Biochemistry 33 1994 10069 10075
    • (1994) Biochemistry , vol.33 , pp. 10069-10075
    • Sled, V.D.1    Rudnitzky, N.I.2    Ohnishi, T.3
  • 54
    • 33746809102 scopus 로고    scopus 로고
    • A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte
    • S. Cortassa, and M.A. Aon R.L. Winslow A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte Biophys. J. 91 2006 1564 1589
    • (2006) Biophys. J. , vol.91 , pp. 1564-1589
    • Cortassa, S.1    Aon, M.A.2    Winslow, R.L.3
  • 55
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • F.Q. Schafer, and G.R. Buettner Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple Free Radic. Biol. Med. 30 2001 1191 1212
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 56
    • 0027418625 scopus 로고
    • Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes
    • T.L. Dawson, and G.J. Gores J.J. Lemasters Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes Am. J. Physiol. 264 1993 C961 C967
    • (1993) Am. J. Physiol. , vol.264
    • Dawson, T.L.1    Gores, G.J.2    Lemasters, J.J.3
  • 57
    • 33947628672 scopus 로고    scopus 로고
    • Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species
    • B.S. Zuckerbraun, and B.Y. Chin L.E. Otterbein Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species FASEB J. 21 2007 1099 1106
    • (2007) FASEB J. , vol.21 , pp. 1099-1106
    • Zuckerbraun, B.S.1    Chin, B.Y.2    Otterbein, L.E.3
  • 58
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • J.F. Turrens Mitochondrial formation of reactive oxygen species J. Physiol. 552 2003 335 344
    • (2003) J. Physiol. , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 61
    • 57049157062 scopus 로고    scopus 로고
    • Quinone and non-quinone redox couples in Complex III
    • H. Zhang, and S.E. Chobot C.C. Moser Quinone and non-quinone redox couples in Complex III J. Bioenerg. Biomembr. 40 2008 493 499
    • (2008) J. Bioenerg. Biomembr. , vol.40 , pp. 493-499
    • Zhang, H.1    Chobot, S.E.2    Moser, C.C.3
  • 63
    • 79251533491 scopus 로고    scopus 로고
    • Explaining the enigmatic KM for oxygen in cytochrome c oxidase: A kinetic model
    • K. Krab, H. Kempe, and M. Wikström Explaining the enigmatic KM for oxygen in cytochrome c oxidase: a kinetic model Biochim. Biophys. Acta 1807 2011 348 358
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 348-358
    • Krab, K.1    Kempe, H.2    Wikström, M.3
  • 64
    • 0030878253 scopus 로고    scopus 로고
    • Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model
    • Y. Orii, and T. Miki Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model J. Biol. Chem. 272 1997 17594 17604
    • (1997) J. Biol. Chem. , vol.272 , pp. 17594-17604
    • Orii, Y.1    Miki, T.2
  • 65
    • 84866950334 scopus 로고    scopus 로고
    • Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis
    • V.A. Selivanov, and M. Cascante T.V. Votyakova Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis PLOS Comput. Biol. 8 2012 e1002700
    • (2012) PLOS Comput. Biol. , vol.8 , pp. 1002700
    • Selivanov, V.A.1    Cascante, M.2    Votyakova, T.V.3
  • 66
    • 79953667930 scopus 로고    scopus 로고
    • Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain
    • V.A. Selivanov, and T.V. Votyakova M. Cascante Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain PLOS Comput. Biol. 7 2011 e1001115
    • (2011) PLOS Comput. Biol. , vol.7 , pp. 1001115
    • Selivanov, V.A.1    Votyakova, T.V.2    Cascante, M.3
  • 67
    • 74549117769 scopus 로고    scopus 로고
    • Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia
    • V.A. Selivanov, and T.V. Votyakova M. Cascante Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia PLOS Comput. Biol. 5 2009 e1000619
    • (2009) PLOS Comput. Biol. , vol.5 , pp. 1000619
    • Selivanov, V.A.1    Votyakova, T.V.2    Cascante, M.3
  • 68
    • 0036789483 scopus 로고    scopus 로고
    • Kinetics of electron transfer through the respiratory chain
    • Q. Jin, and C.M. Bethke Kinetics of electron transfer through the respiratory chain Biophys. J. 83 2002 1797 1808
    • (2002) Biophys. J. , vol.83 , pp. 1797-1808
    • Jin, Q.1    Bethke, C.M.2
  • 69
    • 4444240180 scopus 로고    scopus 로고
    • A mitochondrial oscillator dependent on reactive oxygen species
    • S. Cortassa, and M.A. Aon B. O'Rourke A mitochondrial oscillator dependent on reactive oxygen species Biophys. J. 87 2004 2060 2073
    • (2004) Biophys. J. , vol.87 , pp. 2060-2073
    • Cortassa, S.1    Aon, M.A.2    O'Rourke, B.3
  • 70
    • 0037380954 scopus 로고    scopus 로고
    • An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics
    • S. Cortassa, and M.A. Aon B. O'Rourke An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics Biophys. J. 84 2003 2734 2755
    • (2003) Biophys. J. , vol.84 , pp. 2734-2755
    • Cortassa, S.1    Aon, M.A.2    O'Rourke, B.3
  • 71
    • 34247373746 scopus 로고    scopus 로고
    • Kinetics of integrated electron transfer in the mitochondrial respiratory chain: Random collisions vs. solid state electron channeling
    • G. Lenaz, and M.L. Genova Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling American Journal of Physiology - Cell Physiology 292 2007 C1221 C1239
    • (2007) American Journal of Physiology - Cell Physiology , vol.292
    • Lenaz, G.1    Genova, M.L.2
  • 72
    • 70350028292 scopus 로고    scopus 로고
    • Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes
    • L. Zhou, and S. Cortassa B. O'Rourke Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes Biophys. J. 97 2009 1843 1852
    • (2009) Biophys. J. , vol.97 , pp. 1843-1852
    • Zhou, L.1    Cortassa, S.2    O'Rourke, B.3
  • 73
    • 77956604712 scopus 로고    scopus 로고
    • Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I)
    • X. Chen, and F. Qi D.A. Beard Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I) Biophys. J. 99 2010 1426 1436
    • (2010) Biophys. J. , vol.99 , pp. 1426-1436
    • Chen, X.1    Qi, F.2    Beard, D.A.3
  • 74
    • 0035929367 scopus 로고    scopus 로고
    • The site of production of superoxide radical in mitochondrial Complex i is not a bound ubisemiquinone but presumably iron-sulfur cluster N2
    • M.L. Genova, and B. Ventura G. Lenaz The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2 FEBS Lett. 505 2001 364 368
    • (2001) FEBS Lett. , vol.505 , pp. 364-368
    • Genova, M.L.1    Ventura, B.2    Lenaz, G.3
  • 75
    • 69049085645 scopus 로고    scopus 로고
    • Generating rate equations for complex enzyme systems by a computer-assisted systematic method
    • F. Qi, and R.K. Dash D.A. Beard Generating rate equations for complex enzyme systems by a computer-assisted systematic method BMC Bioinformatics 10 2009 238
    • (2009) BMC Bioinformatics , vol.10 , pp. 238
    • Qi, F.1    Dash, R.K.2    Beard, D.A.3
  • 76
    • 0014689505 scopus 로고
    • The redox states of respiratory-chain components in rat-liver mitochondria II. The "crossover" on the transition from State 3 to State 4
    • S. Muraoka, and E.C. Slater The redox states of respiratory-chain components in rat-liver mitochondria II. The "crossover" on the transition from State 3 to State 4 Biochim. Biophys. Acta 180 1969 227 236
    • (1969) Biochim. Biophys. Acta , vol.180 , pp. 227-236
    • Muraoka, S.1    Slater, E.C.2
  • 77
    • 0031744648 scopus 로고    scopus 로고
    • Pathways of proton transfer in cytochrome c oxidase
    • P. Brzezinski, and P. Ädelroth Pathways of proton transfer in cytochrome c oxidase J. Bioenerg. Biomembr. 30 1998 99 107
    • (1998) J. Bioenerg. Biomembr. , vol.30 , pp. 99-107
    • Brzezinski, P.1    Ädelroth, P.2
  • 78
    • 0025238864 scopus 로고
    • Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the "top-down" approach of metabolic control theory
    • R.P. Hafner, G.C. Brown, and M.D. Brand Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the "top-down" approach of metabolic control theory Eur. J. Biochem. 188 1990 313 319
    • (1990) Eur. J. Biochem. , vol.188 , pp. 313-319
    • Hafner, R.P.1    Brown, G.C.2    Brand, M.D.3
  • 79
    • 0029950113 scopus 로고    scopus 로고
    • Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet
    • L. Lionetti, and S. Iossa G. Liverini Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet Mol. Cell. Biochem. 158 1996 133 138
    • (1996) Mol. Cell. Biochem. , vol.158 , pp. 133-138
    • Lionetti, L.1    Iossa, S.2    Liverini, G.3
  • 80
    • 0034661503 scopus 로고    scopus 로고
    • Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding
    • A. Marcinkeviciute, and V. Mildaziene B. Kholodenko Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding Biochem. J. 349 2000 519 526
    • (2000) Biochem. J. , vol.349 , pp. 519-526
    • Marcinkeviciute, A.1    Mildaziene, V.2    Kholodenko, B.3
  • 82
    • 0034811384 scopus 로고    scopus 로고
    • Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain
    • A.A. Starkov, and G. Fiskum Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain Biochem. Biophys. Res. Commun. 281 2001 645 650
    • (2001) Biochem. Biophys. Res. Commun. , vol.281 , pp. 645-650
    • Starkov, A.A.1    Fiskum, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.