메뉴 건너뛰기




Volumn 10, Issue 2, 2013, Pages 447-456

Nonnegative least-squares methods for the classification of high-dimensional biological data

Author keywords

algorithms; classifier design and evaluation; Medicine

Indexed keywords

CLASSIFICATION TECHNIQUE; CLASSIFIER DESIGN AND EVALUATION; COMPARATIVE GENOMIC HYBRIDIZATION DATUM; COMPUTATIONAL EXPERIMENT; COMPUTATIONAL PROBLEM; MICROARRAY GENE EXPRESSION; PREDICTION PERFORMANCE; STATISTICAL COMPARISONS;

EID: 84882931754     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2013.30     Document Type: Article
Times cited : (42)

References (54)
  • 2
    • 79551652532 scopus 로고    scopus 로고
    • Preprocessing and downstream analysis of microarray dna copy number profiles
    • M.A. van de Wiel, F. Picard, W.N. van Wieringen, and B. Ylstra, "Preprocessing and Downstream Analysis of Microarray DNA Copy Number Profiles," Briefings in Bioinformatics, vol. 12, no. 1, pp. 10-21, 2010.
    • (2010) Briefings in Bioinformatics , vol.12 , Issue.1 , pp. 10-21
    • Wiel De Van, M.A.1    Picard, F.2    Van Wieringen, W.N.3    Ylstra, B.4
  • 3
    • 84872980411 scopus 로고    scopus 로고
    • Weighted random subspace method for high dimensional data classification
    • X. Li and H. Zhao, "Weighted Random Subspace Method for High Dimensional Data Classification," Statistics and Its Interface, vol. 2, no. 2, pp. 153-159, 2009.
    • (2009) Statistics and Its Interface , vol.2 , Issue.2 , pp. 153-159
    • Li, X.1    Zhao, H.2
  • 4
    • 78649820297 scopus 로고    scopus 로고
    • Short prokaryotic fragment binning using hierarchical classifier based on linear discriminant analysis and principle component analysis
    • H. Zheng and H. Wu, "Short Prokaryotic Fragment Binning Using Hierarchical Classifier Based on Linear Discriminant Analysis and Principle Component Analysis," J. Bioinformatics and Computational Biology, vol. 8, no. 6, pp. 995-1011, 2010.
    • (2010) J. Bioinformatics and Computational Biology , vol.8 , Issue.6 , pp. 995-1011
    • Zheng, H.1    Wu, H.2
  • 5
    • 16344365619 scopus 로고    scopus 로고
    • Classification using partial least squares with penalized logistic regression
    • DOI 10.1093/bioinformatics/bti114
    • G. Fort and S. Lambert-Lacroix, "Classification Using Partial Least Squares with Penalized Logistic Regression," Bioinformatics, vol. 21, no. 7, pp. 1104-1111, 2005. (Pubitemid 40467934)
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1104-1111
    • Fort, G.1    Lambert-Lacroix, S.2
  • 7
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee and S. Seung, "Learning the Parts of Objects by Non-Negative Matrix Factorization," Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, S.2
  • 9
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • DOI 10.1093/bioinformatics/btm134
    • H. Kim and H. Park, "Sparse Non-Negatice Matrix Factorization via Alternating Non-Negativity-Constrained Least Squares for Microarray Data Analysis," Bioinformatics, vol. 23, no. 12, pp. 1495-1502, 2007. (Pubitemid 47244474)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 11
    • 79952383578 scopus 로고    scopus 로고
    • Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data
    • Y. Li and A. Ngom, "Non-Negative Matrix and Tensor Factorization Based Classification of Clinical Microarray Gene Expression Data," Proc. IEEE Int'l Conf. Bioinformatics and Biomedicine, pp. 438-443, 2010.
    • (2010) Proc. IEEE Int'l Conf. Bioinformatics and Biomedicine , pp. 438-443
    • Li, Y.1    Ngom, A.2
  • 12
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. Blum and A. Langley, "Selection of Relevant Features and Examples in Machine Learning," Artificial Intelligence, vol. 97, pp. 245-271, 1997. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 13
    • 77955319253 scopus 로고    scopus 로고
    • Gene and sample selection for cancer classification with support vectors based t-statistic
    • P.A. Mundra and J.C. Rajapakse, "Gene and Sample Selection for Cancer Classification with Support Vectors Based t-Statistic," Neurocomputing, vol. 73, nos. 13-15, pp. 2353-2362, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.13-15 , pp. 2353-2362
    • Mundra, P.A.1    Rajapakse, J.C.2
  • 14
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, "The Strength of Weak Learnability," Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 15
    • 4644347255 scopus 로고    scopus 로고
    • A selective sampling approach to active feature selection
    • H. Liu, H. Motoda, and L. Yu, "A Selective Sampling Approach to Active Feature Selection," Artificial Intelligence, vol. 159, pp. 49-74, 2004.
    • (2004) Artificial Intelligence , vol.159 , pp. 49-74
    • Liu, H.1    Motoda, H.2    Yu, L.3
  • 16
    • 0000876414 scopus 로고
    • Local learning algorithms
    • L. Bottou and V.N. Vapnik, "Local Learning Algorithms," Neural Computation, vol. 4, no. 6, pp. 888-900, 1992.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.N.2
  • 19
    • 77649248407 scopus 로고    scopus 로고
    • Efficient algorithm for localized support vector machine
    • Apr
    • H. Cheng, P.-N. Tan, and R. Jin, "Efficient Algorithm for Localized Support Vector Machine," IEEE Trans. Knowledge and Data Eng., vol. 22, no. 4, pp. 537-549, Apr. 2010.
    • (2010) IEEE Trans. Knowledge and Data Eng. , vol.22 , Issue.4 , pp. 537-549
    • Cheng, H.1    Tan, P.-N.2    Jin, R.3
  • 21
    • 0032091533 scopus 로고    scopus 로고
    • Global and local neural network ensembles
    • PII S0167865598000427
    • A. Sierra and C.S. Cruz, "Global and Local Neural Network Ensembles," Pattern Recognition Letters, vol. 19, no. 8, pp. 651-655, 1998. (Pubitemid 128381330)
    • (1998) Pattern Recognition Letters , vol.19 , Issue.8 , pp. 651-655
    • Sierra, A.1    Santa Cruz, C.2
  • 22
    • 0035201642 scopus 로고    scopus 로고
    • Local discriminative learning for pattern recognition
    • DOI 10.1016/S0031-3203(99)00209-5
    • J. Peng and B. Bhanu, "Local Discriminative Learning for Pattern Recognition," Pattern Recognition, vol. 34, pp. 139-150, 2001. (Pubitemid 32023162)
    • (2001) Pattern Recognition , vol.34 , Issue.1 , pp. 139-150
    • Peng, J.1    Bhanu, B.2
  • 26
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Feb
    • L. Rokach, "Ensemble-Based Classifiers," Artificial Intelligence Rev., vol. 33, nos. 1/2, pp. 1-39, Feb. 2010.
    • (2010) Artificial Intelligence Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 33
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • DOI 10.1016/j.csda.2006.11.006, PII S0167947306004191
    • M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plemmons, "Algorithms and Applications for Approximate Nonnegative Matrix Factorization," Computational Statistics & Data Analysis, vol. 52, pp. 155-173, 2007. (Pubitemid 47331703)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.W.1    Browne, M.2    Langville, A.N.3    Pauca, V.P.4    Plemmons, R.J.5
  • 34
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim and H. Park, "Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method," SIAM J. Matrix Analysis and Applications, vol. 30, no. 2, pp. 713-730, 2008.
    • (2008) SIAM J. Matrix Analysis and Applications , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 36
    • 24944500827 scopus 로고    scopus 로고
    • Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems
    • DOI 10.1002/cem.889
    • M.H. Van Benthem and M.R. Keenan, "Fast Algorithm for the Solution of Large-Scale Non-Negaive Constrained Least Squares Problems," J. Chemometrics, vol. 18, pp. 441-450, 2004. (Pubitemid 41327531)
    • (2004) Journal of Chemometrics , vol.18 , Issue.10 , pp. 441-450
    • Van Benthem, M.H.1    Keenan, M.R.2
  • 37
    • 0035300437 scopus 로고    scopus 로고
    • Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays
    • D.A. Notterman et al., "Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays," Cancer Research, vol. 61, no. 7, pp. 3124-3130, 2001. (Pubitemid 32691964)
    • (2001) Cancer Research , vol.61 , Issue.7 , pp. 3124-3130
    • Notterman, D.A.1    Alon, U.2    Sierk, A.J.3    Levine, A.J.4
  • 38
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L.J. Van't Veer et al., "Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer," Nature, vol. 415, no. 6871, pp. 530-536, 2002.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530-536
    • Van'T Veer, L.J.1
  • 41
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol. 286, no. 15, pp. 531-537, 1999.
    • (1999) Science , vol.286 , Issue.15 , pp. 531-537
    • Golub, T.R.1
  • 42
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • D.G. Beer et al., "Gene-Expression Profiles Predict Survival of Patients with Lung Adenocarcinoma," Nature Medicine, vol. 8, no. 8, pp. 816-823, 2002.
    • (2002) Nature Medicine , vol.8 , Issue.8 , pp. 816-823
    • Beer, D.G.1
  • 45
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • E.J. Yeoh et al., "Classification, Subtype Discovery, and Prediction of Outcome in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling," Cancer Cell, vol. 1, no. 2, pp. 133-143, 2002.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 133-143
    • Yeoh, E.J.1
  • 46
    • 33646874546 scopus 로고    scopus 로고
    • The molecular portraits of breast tumors are conserved across microarray platforms
    • article 96
    • Z. Hu et al., "The Molecular Portraits of Breast Tumors Are Conserved across Microarray Platforms," BMC Genomics, vol. 7, article 96, 2006.
    • (2006) BMC Genomics , vol.7
    • Hu, Z.1
  • 48
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • S.A. Armstrong et al., "MLL Translocations Specify a Distinct Gene Expression Profile That Distinguishes a Unique Leukemia," Nature Genetics, vol. 30, no. 1, pp. 41-47, 2002.
    • (2002) Nature Genetics , vol.30 , Issue.1 , pp. 41-47
    • Armstrong, S.A.1
  • 52
    • 66849143199 scopus 로고    scopus 로고
    • Genomic profiling and identification of high-risk uveal melanoma by array cgh analysis of primary tumors and liver metastases
    • J. Trolet et al., "Genomic Profiling and Identification of High-Risk Uveal Melanoma by Array CGH Analysis of Primary Tumors and Liver Metastases," Investigative Ophthalmology and Visual Science, vol. 50, no. 6, pp. 2572-2580, 2009.
    • (2009) Investigative Ophthalmology and Visual Science , vol.50 , Issue.6 , pp. 2572-2580
    • Trolet, J.1
  • 53
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 54
    • 79955987079 scopus 로고    scopus 로고
    • Modelling vocabulary acquisition, adaptation and generalization in infants using adaptive bayesian plsa
    • J. Driesen and H. Van hamme, "Modelling Vocabulary Acquisition, Adaptation and Generalization in Infants Using Adaptive Bayesian PLSA," Neurocomputing, vol. 74, no. 11, pp. 1874-1882, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1874-1882
    • Driesen, J.1    Van Hamme, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.