메뉴 건너뛰기




Volumn 8, Issue 8, 2013, Pages

Size Of Gene Specific Inverted Repeat - Dependent Gene Deletion In Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CONTROLLED STUDY; FUNGAL GENE; FUNGAL GENOME; FUNGAL STRAIN; GENE CASSETTE; GENE DELETION; GENE FREQUENCY; GENETIC TRANSFORMATION; HOMOLOGOUS RECOMBINATION; MUTAGENESIS; NONHUMAN; NUCLEOTIDE SEQUENCE; PLASMID; POLYMERASE CHAIN REACTION; PURIFICATION; RESTRICTION SITE; SACCHAROMYCES CEREVISIAE; URA3 GENE;

EID: 84882586470     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0072137     Document Type: Article
Times cited : (4)

References (35)
  • 2
    • 81255197643 scopus 로고    scopus 로고
    • Yeast: an experimental organism for 21st Century biology
    • Botstein D, Fink GR, (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189: 695-704.
    • (2011) Genetics , vol.189 , pp. 695-704
    • Botstein, D.1    Fink, G.R.2
  • 3
    • 0037173615 scopus 로고    scopus 로고
    • Functional profiling of the Saccharomyces cerevisiae genome
    • Giaver G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.
    • (2002) Nature , vol.418 , pp. 387-391
    • Giaver, G.1    Chu, A.M.2    Ni, L.3    Connelly, C.4    Riles, L.5
  • 4
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong KK, Nielsen J, (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 5
    • 73849092565 scopus 로고    scopus 로고
    • Industrial biotechnology: Tools and applications
    • Tang WL, Zhao H, (2009) Industrial biotechnology: Tools and applications. Biotechnol J 4: 1725-1739.
    • (2009) Biotechnol J , vol.4 , pp. 1725-1739
    • Tang, W.L.1    Zhao, H.2
  • 6
    • 70349324305 scopus 로고    scopus 로고
    • Creating bacterial strains from genomes that have been cloned and engineered in yeast
    • Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA, et al. (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325: 1693-1696.
    • (2009) Science , vol.325 , pp. 1693-1696
    • Lartigue, C.1    Vashee, S.2    Algire, M.A.3    Chuang, R.Y.4    Benders, G.A.5
  • 7
    • 79959687662 scopus 로고    scopus 로고
    • An integrated approach to characterize genetic interaction networks in yeast metabolism
    • Szappanos B, Kovacs K, Szamecz B, Honti F, Constanzo M, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43: 656-662.
    • (2011) Nat Genet , vol.43 , pp. 656-662
    • Szappanos, B.1    Kovacs, K.2    Szamecz, B.3    Honti, F.4    Constanzo, M.5
  • 8
    • 0033529707 scopus 로고    scopus 로고
    • Functional Characterization of the Saccharomyces cerevisiae Genome by Gene Deletion and Parallel Analysis
    • Winzeler E, Shoemaker DD, Astromoff A, Liang H, Anderson K, et al. (1999) Functional Characterization of the Saccharomyces cerevisiae Genome by Gene Deletion and Parallel Analysis. Science 285: 901-906.
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.1    Shoemaker, D.D.2    Astromoff, A.3    Liang, H.4    Anderson, K.5
  • 9
    • 0028676232 scopus 로고
    • New heterologous modules for classical or PCE-based gene disruptions in Saccharomyces cerevisiae
    • Wach A, Brachat A, Pohlmann R, Philippsen P, (1994) New heterologous modules for classical or PCE-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808.
    • (1994) Yeast , vol.10 , pp. 1793-1808
    • Wach, A.1    Brachat, A.2    Pohlmann, R.3    Philippsen, P.4
  • 10
    • 0025331085 scopus 로고
    • Manipulating yeast genome using plasmid vectors
    • StearnsT, Ma H, Botstein D, (1990) Manipulating yeast genome using plasmid vectors. Methods Enzymol 185: 280-297.
    • (1990) Methods Enzymol , vol.185 , pp. 280-297
    • Stearns, T.1    Ma, H.2    Botstein, D.3
  • 11
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein AL, McCusker JH, (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 12
    • 0023191396 scopus 로고
    • Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae
    • Gatignol A, Baron M, Tiraby G, (1987) Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae. Mol Gen Genet 207: 342-348.
    • (1987) Mol Gen Genet , vol.207 , pp. 342-348
    • Gatignol, A.1    Baron, M.2    Tiraby, G.3
  • 14
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Güldener U, Heinisch J, Koechler GJ, Voss D, Hegemann J H, (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Re 30: e23.
    • (2002) Nucleic Acids Re , vol.30
    • Güldener, U.1    Heinisch, J.2    Koechler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 15
    • 0021668558 scopus 로고
    • A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance
    • Boeke J, Lacroute F, Fink GR, (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: 345-346.
    • (1984) Mol Gen Genet , vol.197 , pp. 345-346
    • Boeke, J.1    Lacroute, F.2    Fink, G.R.3
  • 16
    • 0036727558 scopus 로고    scopus 로고
    • Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein
    • Zhang Z, Lutz B, (2002) Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res 30: e90.
    • (2002) Nucleic Acids Res , vol.30
    • Zhang, Z.1    Lutz, B.2
  • 17
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6
  • 18
    • 20444507868 scopus 로고    scopus 로고
    • Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome
    • Gray M, Piccirillo S, Honigberg SM, (2005) Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome. FEMS Microbiol Lett 248: 31-6.
    • (2005) FEMS Microbiol Lett , vol.248 , pp. 31-36
    • Gray, M.1    Piccirillo, S.2    Honigberg, S.M.3
  • 19
    • 0029096027 scopus 로고
    • A method for performing precise alterations in the yeast genome using a recyclable selectable marker
    • Längle-Rouault F, Jacobs E, (1995) A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res 23: 3079-3081.
    • (1995) Nucleic Acids Res , vol.23 , pp. 3079-3081
    • Längle-Rouault, F.1    Jacobs, E.2
  • 20
    • 0023392267 scopus 로고
    • A Method for Gene Disruption That Allows Repeated Use of USR3 Selection in the Construction of Multiply Disrupted Yeast Strains
    • Alani E, Cao L, Kleckner N, (1987) A Method for Gene Disruption That Allows Repeated Use of USR3 Selection in the Construction of Multiply Disrupted Yeast Strains. Genetics 116: 541-545.
    • (1987) Genetics , vol.116 , pp. 541-545
    • Alani, E.1    Cao, L.2    Kleckner, N.3
  • 21
    • 0038799991 scopus 로고    scopus 로고
    • Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae
    • Páques F, Haber JE, (1999) Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae. Microbiol Mol Bio Rev 63: 349-404.
    • (1999) Microbiol Mol Bio Rev , vol.63 , pp. 349-404
    • Páques, F.1    Haber, J.E.2
  • 22
    • 58549117130 scopus 로고    scopus 로고
    • Mutagenic inverted repeat assisted genome engineering (MIRAGE)
    • Nair NU, Zhao H, (2009) Mutagenic inverted repeat assisted genome engineering (MIRAGE). Nucleic Acids Res 37: e9.
    • (2009) Nucleic Acids Res , vol.37
    • Nair, N.U.1    Zhao, H.2
  • 23
    • 77952514791 scopus 로고    scopus 로고
    • Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast
    • Noskov VN, Segall-Shapiro TH, Chuang RY, (2010) Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res 38: 2570-2576.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2570-2576
    • Noskov, V.N.1    Segall-Shapiro, T.H.2    Chuang, R.Y.3
  • 25
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of Yeast by the LiAc/SS Carrier DNA/PEG method
    • Gietz RD, Woods RA, (2002) Transformation of Yeast by the LiAc/SS Carrier DNA/PEG method. Meth Enzymol 350: 87-96.
    • (2002) Meth Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 27
    • 0031941013 scopus 로고    scopus 로고
    • Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae
    • Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD,et al. 1998) Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148: 1507-1524.
    • (1998) Genetics , vol.148 , pp. 1507-1524
    • Lobachev, K.S.1    Shor, B.M.2    Tran, H.T.3    Taylor, W.4    Keen, J.D.5
  • 28
    • 32544461879 scopus 로고    scopus 로고
    • A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast
    • Hirashima K, Iwaki T, Takegawa K, Giga-Hama Y, Tohda H, (2006) A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acids Res 34: e11.
    • (2006) Nucleic Acids Res , vol.34
    • Hirashima, K.1    Iwaki, T.2    Takegawa, K.3    Giga-Hama, Y.4    Tohda, H.5
  • 29
    • 77955479780 scopus 로고    scopus 로고
    • Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange
    • Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, et al. (2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39: 346-359.
    • (2010) Mol Cell , vol.39 , pp. 346-359
    • Lambert, S.1    Mizuno, K.2    Blaisonneau, J.3    Martineau, S.4    Chanet, R.5
  • 30
    • 84868160005 scopus 로고    scopus 로고
    • Recovery of arrested replication forks by homologous recombination is error-prone
    • Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Fréon K, et al. (2012) Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8: e1002976.
    • (2012) PLoS Genet , vol.8
    • Iraqui, I.1    Chekkal, Y.2    Jmari, N.3    Pietrobon, V.4    Fréon, K.5
  • 31
    • 0029087573 scopus 로고
    • Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes
    • Tran HT, Degtyareva NP, Koloteva NN, Sugino A, Masumoto H, et al. (1995) Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol 15: 5607-5617.
    • (1995) Mol Cell Biol , vol.15 , pp. 5607-5617
    • Tran, H.T.1    Degtyareva, N.P.2    Koloteva, N.N.3    Sugino, A.4    Masumoto, H.5
  • 32
    • 59949101230 scopus 로고    scopus 로고
    • Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans
    • Inagaki H, Ohye T, Kogo H, Kato T, Bolor H, et al. (2009) Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 19: 191-198.
    • (2009) Genome Res , vol.19 , pp. 191-198
    • Inagaki, H.1    Ohye, T.2    Kogo, H.3    Kato, T.4    Bolor, H.5
  • 33
    • 33748933575 scopus 로고    scopus 로고
    • A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae
    • Toulmay A, Schneiter R (2006) A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae. Yeast: 23, 825-831.
    • (2006) Yeast , vol.23 , pp. 825-831
    • Toulmay, A.1    Schneiter, R.2
  • 34
    • 82655189421 scopus 로고    scopus 로고
    • GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in Saccharomyces cerevisiae
    • Piccirillo S, Wang HL, Fisher TJ, Honigberg SM, (2011) GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in Saccharomyces cerevisiae. BMC Biotechnol 11: 120.
    • (2011) BMC Biotechnol , vol.11 , pp. 120
    • Piccirillo, S.1    Wang, H.L.2    Fisher, T.J.3    Honigberg, S.M.4
  • 35
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, et al. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41: 4336-4343.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4    Aach, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.