-
2
-
-
81255197643
-
Yeast: an experimental organism for 21st Century biology
-
Botstein D, Fink GR, (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189: 695-704.
-
(2011)
Genetics
, vol.189
, pp. 695-704
-
-
Botstein, D.1
Fink, G.R.2
-
3
-
-
0037173615
-
Functional profiling of the Saccharomyces cerevisiae genome
-
Giaver G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.
-
(2002)
Nature
, vol.418
, pp. 387-391
-
-
Giaver, G.1
Chu, A.M.2
Ni, L.3
Connelly, C.4
Riles, L.5
-
4
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong KK, Nielsen J, (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
5
-
-
73849092565
-
Industrial biotechnology: Tools and applications
-
Tang WL, Zhao H, (2009) Industrial biotechnology: Tools and applications. Biotechnol J 4: 1725-1739.
-
(2009)
Biotechnol J
, vol.4
, pp. 1725-1739
-
-
Tang, W.L.1
Zhao, H.2
-
6
-
-
70349324305
-
Creating bacterial strains from genomes that have been cloned and engineered in yeast
-
Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA, et al. (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325: 1693-1696.
-
(2009)
Science
, vol.325
, pp. 1693-1696
-
-
Lartigue, C.1
Vashee, S.2
Algire, M.A.3
Chuang, R.Y.4
Benders, G.A.5
-
7
-
-
79959687662
-
An integrated approach to characterize genetic interaction networks in yeast metabolism
-
Szappanos B, Kovacs K, Szamecz B, Honti F, Constanzo M, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43: 656-662.
-
(2011)
Nat Genet
, vol.43
, pp. 656-662
-
-
Szappanos, B.1
Kovacs, K.2
Szamecz, B.3
Honti, F.4
Constanzo, M.5
-
8
-
-
0033529707
-
Functional Characterization of the Saccharomyces cerevisiae Genome by Gene Deletion and Parallel Analysis
-
Winzeler E, Shoemaker DD, Astromoff A, Liang H, Anderson K, et al. (1999) Functional Characterization of the Saccharomyces cerevisiae Genome by Gene Deletion and Parallel Analysis. Science 285: 901-906.
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.1
Shoemaker, D.D.2
Astromoff, A.3
Liang, H.4
Anderson, K.5
-
9
-
-
0028676232
-
New heterologous modules for classical or PCE-based gene disruptions in Saccharomyces cerevisiae
-
Wach A, Brachat A, Pohlmann R, Philippsen P, (1994) New heterologous modules for classical or PCE-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808.
-
(1994)
Yeast
, vol.10
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pohlmann, R.3
Philippsen, P.4
-
10
-
-
0025331085
-
Manipulating yeast genome using plasmid vectors
-
StearnsT, Ma H, Botstein D, (1990) Manipulating yeast genome using plasmid vectors. Methods Enzymol 185: 280-297.
-
(1990)
Methods Enzymol
, vol.185
, pp. 280-297
-
-
Stearns, T.1
Ma, H.2
Botstein, D.3
-
11
-
-
0032873415
-
Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
-
Goldstein AL, McCusker JH, (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
-
(1999)
Yeast
, vol.15
, pp. 1541-1553
-
-
Goldstein, A.L.1
McCusker, J.H.2
-
12
-
-
0023191396
-
Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae
-
Gatignol A, Baron M, Tiraby G, (1987) Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae. Mol Gen Genet 207: 342-348.
-
(1987)
Mol Gen Genet
, vol.207
, pp. 342-348
-
-
Gatignol, A.1
Baron, M.2
Tiraby, G.3
-
13
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH, (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519-2524.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 2519-2524
-
-
Güldener, U.1
Heck, S.2
Fiedler, T.3
Beinhauer, J.4
Hegemann, J.H.5
-
14
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
Güldener U, Heinisch J, Koechler GJ, Voss D, Hegemann J H, (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Re 30: e23.
-
(2002)
Nucleic Acids Re
, vol.30
-
-
Güldener, U.1
Heinisch, J.2
Koechler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
15
-
-
0021668558
-
A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance
-
Boeke J, Lacroute F, Fink GR, (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: 345-346.
-
(1984)
Mol Gen Genet
, vol.197
, pp. 345-346
-
-
Boeke, J.1
Lacroute, F.2
Fink, G.R.3
-
16
-
-
0036727558
-
Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein
-
Zhang Z, Lutz B, (2002) Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res 30: e90.
-
(2002)
Nucleic Acids Res
, vol.30
-
-
Zhang, Z.1
Lutz, B.2
-
17
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
-
18
-
-
20444507868
-
Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome
-
Gray M, Piccirillo S, Honigberg SM, (2005) Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome. FEMS Microbiol Lett 248: 31-6.
-
(2005)
FEMS Microbiol Lett
, vol.248
, pp. 31-36
-
-
Gray, M.1
Piccirillo, S.2
Honigberg, S.M.3
-
19
-
-
0029096027
-
A method for performing precise alterations in the yeast genome using a recyclable selectable marker
-
Längle-Rouault F, Jacobs E, (1995) A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res 23: 3079-3081.
-
(1995)
Nucleic Acids Res
, vol.23
, pp. 3079-3081
-
-
Längle-Rouault, F.1
Jacobs, E.2
-
20
-
-
0023392267
-
A Method for Gene Disruption That Allows Repeated Use of USR3 Selection in the Construction of Multiply Disrupted Yeast Strains
-
Alani E, Cao L, Kleckner N, (1987) A Method for Gene Disruption That Allows Repeated Use of USR3 Selection in the Construction of Multiply Disrupted Yeast Strains. Genetics 116: 541-545.
-
(1987)
Genetics
, vol.116
, pp. 541-545
-
-
Alani, E.1
Cao, L.2
Kleckner, N.3
-
21
-
-
0038799991
-
Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae
-
Páques F, Haber JE, (1999) Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae. Microbiol Mol Bio Rev 63: 349-404.
-
(1999)
Microbiol Mol Bio Rev
, vol.63
, pp. 349-404
-
-
Páques, F.1
Haber, J.E.2
-
22
-
-
58549117130
-
Mutagenic inverted repeat assisted genome engineering (MIRAGE)
-
Nair NU, Zhao H, (2009) Mutagenic inverted repeat assisted genome engineering (MIRAGE). Nucleic Acids Res 37: e9.
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Nair, N.U.1
Zhao, H.2
-
23
-
-
77952514791
-
Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast
-
Noskov VN, Segall-Shapiro TH, Chuang RY, (2010) Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res 38: 2570-2576.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 2570-2576
-
-
Noskov, V.N.1
Segall-Shapiro, T.H.2
Chuang, R.Y.3
-
24
-
-
17144450611
-
Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously
-
Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, et al. (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res 32: e19.
-
(2004)
Nucleic Acids Res
, vol.32
-
-
Shevchuk, N.A.1
Bryksin, A.V.2
Nusinovich, Y.A.3
Cabello, F.C.4
Sutherland, M.5
-
25
-
-
0036270543
-
Transformation of Yeast by the LiAc/SS Carrier DNA/PEG method
-
Gietz RD, Woods RA, (2002) Transformation of Yeast by the LiAc/SS Carrier DNA/PEG method. Meth Enzymol 350: 87-96.
-
(2002)
Meth Enzymol
, vol.350
, pp. 87-96
-
-
Gietz, R.D.1
Woods, R.A.2
-
26
-
-
0027220892
-
Inverted DNA repeats: a source of eukaryotic genomic instability
-
Gordenin DA, Lobachev KS, Degtyareva NP, Malkova AL, Perkins E, et al. (1993) Inverted DNA repeats: a source of eukaryotic genomic instability. Mol Cell Biol 13: 5315-5322.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 5315-5322
-
-
Gordenin, D.A.1
Lobachev, K.S.2
Degtyareva, N.P.3
Malkova, A.L.4
Perkins, E.5
-
27
-
-
0031941013
-
Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae
-
Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD,et al. 1998) Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148: 1507-1524.
-
(1998)
Genetics
, vol.148
, pp. 1507-1524
-
-
Lobachev, K.S.1
Shor, B.M.2
Tran, H.T.3
Taylor, W.4
Keen, J.D.5
-
28
-
-
32544461879
-
A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast
-
Hirashima K, Iwaki T, Takegawa K, Giga-Hama Y, Tohda H, (2006) A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acids Res 34: e11.
-
(2006)
Nucleic Acids Res
, vol.34
-
-
Hirashima, K.1
Iwaki, T.2
Takegawa, K.3
Giga-Hama, Y.4
Tohda, H.5
-
29
-
-
77955479780
-
Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange
-
Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, et al. (2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39: 346-359.
-
(2010)
Mol Cell
, vol.39
, pp. 346-359
-
-
Lambert, S.1
Mizuno, K.2
Blaisonneau, J.3
Martineau, S.4
Chanet, R.5
-
30
-
-
84868160005
-
Recovery of arrested replication forks by homologous recombination is error-prone
-
Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Fréon K, et al. (2012) Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8: e1002976.
-
(2012)
PLoS Genet
, vol.8
-
-
Iraqui, I.1
Chekkal, Y.2
Jmari, N.3
Pietrobon, V.4
Fréon, K.5
-
31
-
-
0029087573
-
Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes
-
Tran HT, Degtyareva NP, Koloteva NN, Sugino A, Masumoto H, et al. (1995) Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol 15: 5607-5617.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 5607-5617
-
-
Tran, H.T.1
Degtyareva, N.P.2
Koloteva, N.N.3
Sugino, A.4
Masumoto, H.5
-
32
-
-
59949101230
-
Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans
-
Inagaki H, Ohye T, Kogo H, Kato T, Bolor H, et al. (2009) Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 19: 191-198.
-
(2009)
Genome Res
, vol.19
, pp. 191-198
-
-
Inagaki, H.1
Ohye, T.2
Kogo, H.3
Kato, T.4
Bolor, H.5
-
33
-
-
33748933575
-
A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae
-
Toulmay A, Schneiter R (2006) A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae. Yeast: 23, 825-831.
-
(2006)
Yeast
, vol.23
, pp. 825-831
-
-
Toulmay, A.1
Schneiter, R.2
-
34
-
-
82655189421
-
GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in Saccharomyces cerevisiae
-
Piccirillo S, Wang HL, Fisher TJ, Honigberg SM, (2011) GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in Saccharomyces cerevisiae. BMC Biotechnol 11: 120.
-
(2011)
BMC Biotechnol
, vol.11
, pp. 120
-
-
Piccirillo, S.1
Wang, H.L.2
Fisher, T.J.3
Honigberg, S.M.4
-
35
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, et al. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41: 4336-4343.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
|