-
1
-
-
84864487585
-
From nano-To macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering
-
Santo VE, Gomes ME, Mano JF, Reis RL. From nano-To macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond.) 7(7), 1045-1066 (2012
-
(2012)
Nanomedicine (Lond
, vol.7
, Issue.7
, pp. 1045-1066
-
-
Santo, V.E.1
Gomes, M.E.2
Mano, J.F.3
Reis, R.L.4
-
2
-
-
84873687049
-
Magnetic hydrogels and their potential biomedical applications
-
Li Y, Huang G, Zhang X et al. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660-672 (2013
-
(2013)
Adv. Funct. Mater
, vol.23
, Issue.6
, pp. 660-672
-
-
Li, Y.1
Huang, G.2
Zhang, X.3
-
3
-
-
84864492709
-
Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming
-
Santo VE, Duarte AR, Popa EG, Gomes ME, Mano JF, Reis RL. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J. Control. Release 162(1), 19-27 (2012
-
(2012)
J. Control. Release
, vol.162
, Issue.1
, pp. 19-27
-
-
Santo, V.E.1
Duarte, A.R.2
Popa, E.G.3
Gomes, M.E.4
Mano, J.F.5
Reis, R.L.6
-
4
-
-
37349069277
-
Nanotechnology in regenerative medicine: The materials side
-
Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: The materials side. Trends Biotechnol. 26(1), 39-47 (2008
-
(2008)
Trends Biotechnol
, vol.26
, Issue.1
, pp. 39-47
-
-
Engel, E.1
Michiardi, A.2
Navarro, M.3
Lacroix, D.4
Planell, J.A.5
-
5
-
-
84881102205
-
Tissue engineering on the nanoscale: Lessons from the heart
-
Fleischer S, Dvir T. Tissue engineering on the nanoscale: Lessons from the heart. Curr. Opin. Biotechnol. 24, 1-8 (2012
-
(2012)
Curr. Opin. Biotechnol
, vol.24
, pp. 1-8
-
-
Fleischer, S.1
Dvir, T.2
-
6
-
-
77955266215
-
Inorganic nanomedicine-part 1
-
Sekhon BS, Kamboj SR Inorganic nanomedicine-part 1. Nanomedicine 6(4), 516-522 (2010
-
(2010)
Nanomedicine
, vol.6
, Issue.4
, pp. 516-522
-
-
Sekhon, B.S.1
Kamboj, S.R.2
-
8
-
-
80055022662
-
Magnetic nanoparticles: Recent advances in syn thesis, self-Assembly and applications
-
Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY. Magnetic nanoparticles: Recent advances in synthesis, self-Assembly and applications. J. Mater. Chem. 21(42), 16819-16845 (2011
-
(2011)
J. Mater. Chem
, vol.21
, Issue.42
, pp. 16819-16845
-
-
Singamaneni, S.1
Bliznyuk, V.N.2
Binek, C.3
Tsymbal, E.Y.4
-
9
-
-
0032426610
-
Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications A review
-
Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications. A review. J. Drug Target. 6(3), 167-174 (1998
-
(1998)
J. Drug Target
, vol.6
, Issue.3
, pp. 167-174
-
-
Bonnemain, B.1
-
10
-
-
84872369552
-
Magnetic fluorescent, and thermo-responsive Fe (3) O(4)/rare earth incorporated poly(St-NIPAM) core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes
-
Zhu H, Tao J, Wang W et al. Magnetic, fluorescent, and thermo-responsive Fe(3) O(4)/rare earth incorporated poly(St-NIPAM) core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34(9), 2296-2306 (2013
-
(2013)
Biomaterials
, vol.34
, Issue.9
, pp. 2296-2306
-
-
Zhu, H.1
Tao, J.2
Wang, W.3
-
11
-
-
70349096857
-
Biofunctionalized magnetic hydrogel nanospheres of magnetite and κ-carrageenan
-
Daniel-Da-Silva AL, Fateixa S, Guiomar AJ et al. Biofunctionalized magnetic hydrogel nanospheres of magnetite and κ-carrageenan. Nanotechnology 20(35), 355602 (2009
-
(2009)
Nanotechnology
, vol.20
, Issue.35
, pp. 355602
-
-
Daniel-Da-Silva, A.L.1
Fateixa, S.2
Guiomar, A.J.3
-
12
-
-
84871429935
-
Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine
-
Santo VE, Gomes ME, Mano JF, Reis RL. Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J. Tissue Eng. Regen. Med. 6(Suppl. 3), s47-s59 (2012
-
(2012)
J. Tissue Eng. Regen. Med
, vol.6
, Issue.SUPPL.3
-
-
Santo, V.E.1
Gomes, M.E.2
Mano, J.F.3
Reis, R.L.4
-
13
-
-
79955743379
-
Synthesis and functionalization of superparamagnetic poly-e-caprolactone microparticles for the selective isolation of subpopulations of human adipose-derived stem cells
-
Balmayor ER, Pashkuleva I, Frias AM, Azevedo HS, Reis RL. Synthesis and functionalization of superparamagnetic poly-e-caprolactone microparticles for the selective isolation of subpopulations of human adipose-derived stem cells. J. R. Soc. Interface 8(59), 896-908 (2011
-
(2011)
J. R. Soc. Interface
, vol.8
, Issue.59
, pp. 896-908
-
-
Balmayor, E.R.1
Pashkuleva, I.2
Frias, A.M.3
Azevedo, H.S.4
Reis, R.L.5
-
14
-
-
35048831742
-
Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: Cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level
-
Hsiao JK, Tai MF, Chu HH et al. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: Cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn. Reson. Med. 58(4), 717-724 (2007
-
(2007)
Magn. Reson. Med
, vol.58
, Issue.4
, pp. 717-724
-
-
Hsiao, J.K.1
Tai, M.F.2
Chu, H.H.3
-
15
-
-
84866144627
-
Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine
-
Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 1-11 (2012
-
(2012)
J. Nanomater
, vol.2012
, pp. 1-11
-
-
Markides, H.1
Rotherham, M.2
El Haj, A.J.3
-
16
-
-
39149138675
-
Vascular tissue engineering with magnetic nanoparticles: Seeing deeper
-
Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E. Vascular tissue engineering with magnetic nanoparticles: Seeing deeper. J. Tissue Eng. Regen. Med. 1(4), 318-321 (2007
-
(2007)
J. Tissue Eng. Regen. Med
, vol.1
, Issue.4
, pp. 318-321
-
-
Perea, H.1
Aigner, J.2
Heverhagen, J.T.3
Hopfner, U.4
Wintermantel, E.5
-
17
-
-
84868143959
-
Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity
-
Samberg ME, Loboa EG, Oldenburg SJ, Monteiro-Riviere NA. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond.) 7(8), 1197-1209 (2012
-
(2012)
Nanomedicine (Lond
, vol.7
, Issue.8
, pp. 1197-1209
-
-
Samberg, M.E.1
Loboa, E.G.2
Oldenburg, S.J.3
Monteiro-Riviere, N.A.4
-
18
-
-
84860137081
-
Orthopaedic applications of nanoparticlebased stem cell therapies
-
Wimpenny I, Markides H, El Haj AJ. Orthopaedic applications of nanoparticlebased stem cell therapies. Stem Cell Res. Ther. 3(2), 13 (2012
-
(2012)
Stem Cell Res. Ther
, vol.3
, Issue.2
, pp. 13
-
-
Wimpenny, I.1
Markides, H.2
El Haj, A.J.3
-
19
-
-
80054713215
-
Three-dimensional magnetic assembly of microscale hydrogels
-
Xu F, Wu CA, Rengarajan V et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. Weinheim 23(37), 4254-4260 (2011
-
(2011)
Adv. Mater. Weinheim
, vol.23
, Issue.37
, pp. 4254-4260
-
-
Xu, F.1
Wu, C.A.2
Rengarajan, V.3
-
20
-
-
84863455876
-
In vivo tracking of mesenchymal stem cells using fluorescent nanoparticles in an osteochondral repair model
-
Lee JM, Kim BS, Lee H, Im GI. In vivo tracking of mesenchymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol. Ther. 20(7), 1434-1442 (2012
-
(2012)
Mol. Ther
, vol.20
, Issue.7
, pp. 1434-1442
-
-
Lee, J.M.1
Kim, B.S.2
Lee, H.3
Im, G.I.4
-
21
-
-
34249911755
-
Magnetic targeting of mechanosensors in bone cells for tissue engineering applications
-
Hughes S, Dobson J, El Haj AJ. Magnetic targeting of mechanosensors in bone cells for tissue engineering applications. J. Biomech. 40(Suppl. 1), S96-104 (2007
-
(2007)
J. Biomech
, vol.40
, Issue.SUPPL.1
-
-
Hughes, S.1
Dobson, J.2
El Haj, A.J.3
-
22
-
-
77957687961
-
Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology
-
Kanczler JM, Sura HS, Magnay J et al. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. Part A 16(10), 3241-3250 (2010
-
(2010)
Tissue Eng. Part A
, vol.16
, Issue.10
, pp. 3241-3250
-
-
Kanczler, J.M.1
Sura, H.S.2
Magnay, J.3
-
23
-
-
84869082531
-
Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior
-
Tseng P, Judy JW, Di Carlo D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods 9(11), 1113-1119 (2012
-
(2012)
Nat. Methods
, vol.9
, Issue.11
, pp. 1113-1119
-
-
Tseng, P.1
Judy, J.W.2
Di Carlo, D.3
-
24
-
-
77950902285
-
Stem cell tracking by nanotechnologies
-
Villa C, Erratico S, Razini P et al. Stem cell tracking by nanotechnologies. Int. J. Mol. Sci. 11(3), 1070-1081 (2010
-
(2010)
Int. J. Mol. Sci
, vol.11
, Issue.3
, pp. 1070-1081
-
-
Villa, C.1
Erratico, S.2
Razini, P.3
-
25
-
-
84877313073
-
Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling
-
Fayol D, Frasca G, Le Visage C, Gazeau F, Luciani N, Wilhelm C. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. Adv. Mater. Weinheim 25(18), 2611-2616 (2013
-
(2013)
Adv. Mater. Weinheim
, vol.25
, Issue.18
, pp. 2611-2616
-
-
Fayol, D.1
Frasca, G.2
Le Visage, C.3
Gazeau, F.4
Luciani, N.5
Wilhelm, C.6
-
26
-
-
84862855650
-
In situ tissue engineering using magnetically guided three-dimensional cell patterning
-
Grogan SP, Pauli C, Chen P et al. In situ tissue engineering using magnetically guided three-dimensional cell patterning. Tissue Eng. Part C. Methods 18(7), 496-506 (2012
-
(2012)
Tissue Eng. Part C. Methods
, vol.18
, Issue.7
, pp. 496-506
-
-
Grogan, S.P.1
Pauli, C.2
Chen, P.3
-
27
-
-
35548939456
-
Magnetic microposts as an approach to apply forces to living cells
-
Sniadecki NJ, Anguelouch A, Yang MT et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl Acad. Sci. USA 104(37), 14553-14558 (2007
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, Issue.37
, pp. 14553-14558
-
-
Sniadecki, N.J.1
Anguelouch, A.2
Yang, M.T.3
-
28
-
-
0037937606
-
Design of a flow perfusion bioreactor system for bone tissue-engineering applications
-
Bancroft GN, Sikavitsas VI, Mikos AG. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9(3), 549-554 (2003
-
(2003)
Tissue Eng
, vol.9
, Issue.3
, pp. 549-554
-
-
Bancroft, G.N.1
Sikavitsas, V.I.2
Mikos, A.G.3
-
29
-
-
0036791972
-
Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner
-
Bancroft GN, Sikavitsas VI, van den Dolder J et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl Acad. Sci. USA 99(20), 12600-12605 (2002
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, Issue.20
, pp. 12600-12605
-
-
Bancroft, G.N.1
Sikavitsas, V.I.2
Van Den Dolder, J.3
-
30
-
-
0037181359
-
Polymer mediated self-Assembly of magnetic nanoparticles
-
Sun S, Anders S, Hamann HF et al. Polymer mediated self-Assembly of magnetic nanoparticles. J. Am. Chem. Soc. 124(12), 2884-2885 (2002
-
(2002)
J. Am. Chem. Soc
, vol.124
, Issue.12
, pp. 2884-2885
-
-
Sun, S.1
Anders, S.2
Hamann, H.F.3
-
31
-
-
33847640185
-
Preparation and characterization of magnetic ferroscaffolds for tissue engineering
-
Hu S-H, Liu T-Y, Tsai C-H, Chen S-Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 310(2, Pt 3), 2871-2873 (2007
-
(2007)
J. Magn. Magn. Mater
, vol.310
, Issue.2 PART3
, pp. 2871-2873
-
-
Hu, S.-H.1
Liu, T.-Y.2
Tsai, C.-H.3
Chen, S.-Y.4
-
32
-
-
84865641253
-
Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release
-
Paulino AT, Pereira AG, Fajardo AR et al. Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydr. Polym. 90(3), 1216-1225 (2012
-
(2012)
Carbohydr. Polym
, vol.90
, Issue.3
, pp. 1216-1225
-
-
Paulino, A.T.1
Pereira, A.G.2
Fajardo, A.R.3
-
33
-
-
84873668647
-
Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering
-
Skaat H, Ziv-Polat O, Shahar A, Last D, Mardor Y, Margel S. Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Adv. Healthc. Mater. 1(2), 168-171 (2012
-
(2012)
Adv. Healthc. Mater
, vol.1
, Issue.2
, pp. 168-171
-
-
Skaat, H.1
Ziv-Polat, O.2
Shahar, A.3
Last, D.4
Mardor, Y.5
Margel, S.6
-
34
-
-
78651087395
-
Active scaffolds for on-demand drug and cell delivery
-
Zhao X, Kim J, Cezar CA et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl Acad. Sci. USA 108(1), 67-72 (2011
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, Issue.1
, pp. 67-72
-
-
Zhao, X.1
Kim, J.2
Cezar, C.A.3
-
35
-
-
84879325968
-
Controlled release strategies for bone, cartilage, and osteochondral engineeringpart I: Recapitulation of native tissue healing and variables for the design of delivery systems
-
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineeringpart I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng. Part B Rev. 19(4), 308-326 (2013
-
(2013)
Tissue Eng. Part B Rev
, vol.19
, Issue.4
, pp. 308-326
-
-
Santo, V.E.1
Gomes, M.E.2
Mano, J.F.3
Reis, R.L.4
-
36
-
-
84877969932
-
Controlled release strategies for bone, cartilage, and osteochondral engineeringpart II: Challenges on the evolution from single to multiple bioactive factor delivery
-
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineeringpart II: Challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng. Part B. Rev. 19(4), 327-352 (2013
-
(2013)
Tissue Eng. Part B. Rev
, vol.19
, Issue.4
, pp. 327-352
-
-
Santo, V.E.1
Gomes, M.E.2
Mano, J.F.3
Reis, R.L.4
-
37
-
-
75149177046
-
A novel route in bone tissue engineering: Magnetic biomimetic scaffolds
-
Bock N, Riminucci A, Dionigi C et al. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 6(3), 786-796 (2010
-
(2010)
Acta Biomater
, vol.6
, Issue.3
, pp. 786-796
-
-
Bock, N.1
Riminucci, A.2
Dionigi, C.3
-
38
-
-
80855147641
-
Cancer hyperthermia using magnetic nanoparticles
-
Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 6(11), 1342-1347 (2011
-
(2011)
Biotechnol. J.
, vol.6
, Issue.11
, pp. 1342-1347
-
-
Kobayashi, T.1
-
39
-
-
84863012723
-
Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles
-
Wang L, Dong J, Ouyang W, Wang X, Tang J. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol. Rep. 27(3), 719-726 (2012
-
(2012)
Oncol. Rep
, vol.27
, Issue.3
, pp. 719-726
-
-
Wang, L.1
Dong, J.2
Ouyang, W.3
Wang, X.4
Tang, J.5
-
40
-
-
84874829918
-
Injectable superparamagnets: Highly elastic and degradable poly (N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels
-
Campbell SB, Patenaude M, Hoare T. Injectable superparamagnets: Highly elastic and degradable poly (N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14(3), 644-653 (2013
-
(2013)
Biomacromolecules
, vol.14
, Issue.3
, pp. 644-653
-
-
Campbell, S.B.1
Patenaude, M.2
Hoare, T.3
-
41
-
-
33646349215
-
Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles
-
Shimizu K, Ito A, Honda H. Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. 77(2), 265-272 (2006
-
(2006)
J. Biomed. Mater. Res. Part B Appl. Biomater
, vol.77
, Issue.2
, pp. 265-272
-
-
Shimizu, K.1
Ito, A.2
Honda, H.3
-
42
-
-
55349085779
-
Magnetic nanoparticles to enhance cell seeding and distribution in tissue engineering scaffolds
-
Thevenot P, Sohaebuddin S, Poudyal N, Liu JP, Tang L. Magnetic Nanoparticles to Enhance Cell Seeding and Distribution in Tissue Engineering Scaffolds. Proc. IEEE Conf. Nanotechnol. 2008, 646-649 (2008
-
(2008)
Proc IEEE Conf. Nanotechnol
, vol.2008
, pp. 646-649
-
-
Thevenot, P.1
Sohaebuddin, S.2
Poudyal, N.3
Liu, J.P.4
Tang, L.5
-
43
-
-
84874046572
-
Paramagnetic levitational assembly of hydrogels
-
1081
-
Tasoglu S, Kavaz D, Gurkan UA et al. Paramagnetic levitational assembly of hydrogels. Adv. Mater. Weinheim 25(8), 1137-43, 1081 (2013
-
(2013)
Adv. Mater. Weinheim
, vol.25
, Issue.8
, pp. 1137-1143
-
-
Tasoglu, S.1
Kavaz, D.2
Gurkan, U.A.3
-
44
-
-
84872934827
-
Techniques for fabrication and construction of threedimensional scaffolds for tissue engineering
-
Lu T, Li Y, Chen T. Techniques for fabrication and construction of threedimensional scaffolds for tissue engineering. Int. J. Nanomed. 8, 337-350 (2013
-
(2013)
Int. J. Nanomed
, vol.8
, pp. 337-350
-
-
Lu, T.1
Li, Y.2
Chen, T.3
-
45
-
-
77950862626
-
Three-dimensional tissue culture based on magnetic cell levitation
-
Souza GR, Molina JR, Raphael RM et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5(4), 291-296 (2010
-
(2010)
Nat. Nanotechnol
, vol.5
, Issue.4
, pp. 291-296
-
-
Souza, G.R.1
Molina, J.R.2
Raphael, R.M.3
-
46
-
-
84876824770
-
Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles
-
Daquinag AC, Souza GR, Kolonin MG. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng. Part C. Methods 19(5), 336-344 (2013
-
(2013)
Tissue Eng. Part C. Methods
, vol.19
, Issue.5
, pp. 336-344
-
-
Daquinag, A.C.1
Souza, G.R.2
Kolonin, M.G.3
-
47
-
-
84876838291
-
Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation
-
doi:10.1089/ten.tec.2012.0157 Epub ahead of print
-
Tseng H, Gage JA, Raphael RM et al. Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng. Part C Methods doi:10.1089/ten.tec.2012.0157 (2013) (Epub ahead of print
-
(2013)
Tissue Eng. Part C Methods
-
-
Tseng, H.1
Gage, J.A.2
Raphael, R.M.3
-
48
-
-
33947714093
-
Fabrication and manipulation of ionotropic hydrogels crosslinked by paramagnetic ions
-
Winkleman A, Bracher PJ, Gitlin I, Whitesides GM. Fabrication and manipulation of ionotropic hydrogels crosslinked by paramagnetic ions. Chem. Mater. 19(6), 1362-1368 (2007
-
(2007)
Chem. Mater
, vol.19
, Issue.6
, pp. 1362-1368
-
-
Winkleman, A.1
Bracher, P.J.2
Gitlin, I.3
Whitesides, G.M.4
-
49
-
-
3042814304
-
Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force
-
Ito A, Hayashida M, Honda H et al. Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng. 10(5-6), 873-880 (2004
-
(2004)
Tissue Eng
, vol.10
, Issue.5-6
, pp. 873-880
-
-
Ito, A.1
Hayashida, M.2
Honda, H.3
-
50
-
-
72149134885
-
Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques
-
Akiyama H, Ito A, Kawabe Y, Kamihira M. Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques. Biomaterials 31(6), 1251-1259 (2010
-
(2010)
Biomaterials
, vol.31
, Issue.6
, pp. 1251-1259
-
-
Akiyama, H.1
Ito, A.2
Kawabe, Y.3
Kamihira, M.4
-
51
-
-
84875124856
-
IPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis
-
Kito T, Shibata R, Ishii M et al. iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci. Rep. 3, 1418 (2013
-
(2013)
Sci. Rep
, vol.3
, Issue.1418
-
-
Kito, T.1
Shibata, R.2
Ishii, M.3
-
52
-
-
27744521654
-
Novel methodology for fabrication of tissueengineered tubular constructs using magnetite nanoparticles and magnetic force
-
Ito A, Ino K, Hayashida M et al. Novel methodology for fabrication of tissueengineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 11(9-10), 1553-1561 (2005
-
(2005)
Tissue Eng
, vol.11
, Issue.9-10
, pp. 1553-1561
-
-
Ito, A.1
Ino, K.2
Hayashida, M.3
-
53
-
-
79952002609
-
Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation
-
Pouponneau P, Leroux JC, Soulez G, Gaboury L, Martel S. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13), 3481-3486 (2011
-
(2011)
Biomaterials
, vol.32
, Issue.13
, pp. 3481-3486
-
-
Pouponneau, P.1
Leroux, J.C.2
Soulez, G.3
Gaboury, L.4
Martel, S.5
-
54
-
-
84867206835
-
A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects
-
Russo A, Shelyakova T, Casino D et al. A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects. Med. Eng. Phys. 34(9), 1287-1293 (2012
-
(2012)
Med. Eng. Phys
, vol.34
, Issue.9
, pp. 1287-1293
-
-
Russo, A.1
Shelyakova, T.2
Casino, D.3
-
55
-
-
84858793272
-
The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds
-
Sapir Y, Cohen S, Friedman G, Polyak B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33(16), 4100-4109 (2012
-
(2012)
Biomaterials
, vol.33
, Issue.16
, pp. 4100-4109
-
-
Sapir, Y.1
Cohen, S.2
Friedman, G.3
Polyak, B.4
-
56
-
-
80052266276
-
Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure
-
Wu C, Fan W, Zhu Y et al. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater. 7(10), 3563-3572 (2011
-
(2011)
Acta Biomater
, vol.7
, Issue.10
, pp. 3563-3572
-
-
Wu, C.1
Fan, W.2
Zhu, Y.3
-
57
-
-
84862649396
-
Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium-And superparamagnetic iron oxide-enhanced MR imaging
-
Tourdias T, Roggerone S, Filippi M et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium-And superparamagnetic iron oxide-enhanced MR imaging. Radiology 264(1), 225-233 (2012
-
(2012)
Radiology
, vol.264
, Issue.1
, pp. 225-233
-
-
Tourdias, T.1
Roggerone, S.2
Filippi, M.3
-
58
-
-
84873669328
-
Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: A human study using a multi-parametric cardiovascular magnetic resonance imaging approach
-
Yilmaz A, Dengler MA, van der Kuip H et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: A human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur. Heart J. 34(6), 462-475 (2013
-
(2013)
Eur. Heart J.
, vol.34
, Issue.6
, pp. 462-475
-
-
Yilmaz, A.1
Dengler, M.A.2
Van Der Kuip, H.3
-
59
-
-
84881099841
-
Human erythrocytes covered with magnetic core-shell nanoparticles for multimodal imaging
-
doi:10.1002/adhm.201200384 Epub ahead of print
-
Laurencin M, Cam N, Georgelin T et al. Human erythrocytes covered with magnetic core-shell nanoparticles for multimodal imaging. Adv. Healthc. Mater. doi:10.1002/adhm.201200384 (2013) (Epub ahead of print
-
(2013)
Adv. Healthc. Mater
-
-
Laurencin, M.1
Cam, N.2
Georgelin, T.3
-
60
-
-
79952398729
-
Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers
-
Ling Y, Pong T, Vassiliou CC, Huang PL, Cima MJ. Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers. Nat. Biotechnol. 29(3), 273-277 (2011
-
(2011)
Nat. Biotechnol
, vol.29
, Issue.3
, pp. 273-277
-
-
Ling, Y.1
Pong, T.2
Vassiliou, C.C.3
Huang, P.L.4
Cima, M.J.5
-
61
-
-
84859813404
-
Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking
-
Andreas K, Georgieva R, Ladwig M et al. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33(18), 4515-4525 (2012
-
(2012)
Biomaterials
, vol.33
, Issue.18
, pp. 4515-4525
-
-
Andreas, K.1
Georgieva, R.2
Ladwig, M.3
-
63
-
-
0042343636
-
Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents
-
Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228(2), 480-487 (2003
-
(2003)
Radiology
, vol.228
, Issue.2
, pp. 480-487
-
-
Frank, J.A.1
Miller, B.R.2
Arbab, A.S.3
-
64
-
-
0035196721
-
Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells
-
Bulte JW, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19(12), 1141-1147 (2001
-
(2001)
Nat. Biotechnol
, vol.19
, Issue.12
, pp. 1141-1147
-
-
Bulte, J.W.1
Douglas, T.2
Witwer, B.3
-
65
-
-
32444439642
-
In situ labeling of immune cells with iron oxide particles: An approach to detect organ rejection by cellular MRI
-
Wu YL, Ye Q, Foley LM et al. In situ labeling of immune cells with iron oxide particles: An approach to detect organ rejection by cellular MRI. Proc. Natl Acad. Sci. USA 103(6), 1852-1857 (2006
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, Issue.6
, pp. 1852-1857
-
-
Wu, Y.L.1
Ye, Q.2
Foley, L.M.3
-
66
-
-
84861480825
-
Labeling protocols for in vivo tracking of human skeletal muscle cells (HSkMCs) by magnetic resonance and bioluminescence imaging
-
Libani IV, Lucignani G, Gianelli U et al. Labeling protocols for in vivo tracking of human skeletal muscle cells (HSkMCs) by magnetic resonance and bioluminescence imaging. Mol. Imaging Biol. 14(1), 47-59 (2012
-
(2012)
Mol. Imaging Biol
, vol.14
, Issue.1
, pp. 47-59
-
-
Libani, I.V.1
Lucignani, G.2
Gianelli, U.3
-
67
-
-
84864661436
-
Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles
-
Xu C, Miranda-Nieves D, Ankrum JA et al Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles. Nano Lett. 12(8), 4131-4139 (2012
-
(2012)
Nano Lett
, vol.12
, Issue.8
, pp. 4131-4139
-
-
Xu, C.1
Miranda-Nieves, D.2
Ankrum, J.A.3
-
68
-
-
84875467361
-
Syn thesis, preliminary structure-Activity relationships, and in vitro biological evaluation of 6-Aryl-3-Amino-Thieno [2,3-b]pyridine derivatives as potential anti-inflammatory agents
-
Liu H, Li Y, Wang XY et al. Synthesis, preliminary structure-Activity relationships, and in vitro biological evaluation of 6-Aryl-3-Amino-Thieno[2,3- b]pyridine derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 23(8), 2349-2352 (2013
-
(2013)
Bioorg. Med. Chem. Lett
, vol.23
, Issue.8
, pp. 2349-2352
-
-
Liu, H.1
Li, Y.2
Wang, X.Y.3
-
69
-
-
77956443547
-
Remote control of ion channels and neurons through magneticfield heating of nanoparticles
-
Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. Remote control of ion channels and neurons through magneticfield heating of nanoparticles. Nat. Nanotechnol. 5(8), 602-606 (2010
-
(2010)
Nat. Nanotechnol
, vol.5
, Issue.8
, pp. 602-606
-
-
Huang, H.1
Delikanli, S.2
Zeng, H.3
Ferkey, D.M.4
Pralle, A.5
-
70
-
-
84879608146
-
Eradicating antibiotic-resistant biofilms with silver-conjugated superparamagnetic iron oxide nanoparticles
-
Durmus NG, Webster TJ. Eradicating antibiotic-resistant biofilms with silver-conjugated superparamagnetic iron oxide nanoparticles. Adv. Healthc. Mater. 2(1), 165-171 (2013
-
(2013)
Adv. Healthc. Mater
, vol.2
, Issue.1
, pp. 165-171
-
-
Durmus, N.G.1
Webster, T.J.2
-
71
-
-
84861953085
-
Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature
-
Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J. Orthop. Surg. Res. 7, 24 (2012
-
(2012)
J. Orthop. Surg. Res
, vol.7
, pp. 24
-
-
Assiotis, A.1
Sachinis, N.P.2
Chalidis, B.E.3
-
72
-
-
79956373925
-
Effect of pulsed electromagnetic field on healing of mandibular fracture: A preliminary clinical study
-
Abdelrahim A, Hassanein HR, Dahaba M. Effect of pulsed electromagnetic field on healing of mandibular fracture: A preliminary clinical study. J. Oral Maxillofac. Surg. 69(6), 1708-1717 (2011
-
(2011)
J. Oral Maxillofac. Surg
, vol.69
, Issue.6
, pp. 1708-1717
-
-
Abdelrahim, A.1
Hassanein, H.R.2
Dahaba, M.3
-
73
-
-
84873994501
-
Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: Pulsed electromagnetic fields therapy
-
Marcheggiani Muccioli GM, Grassi A, Setti S et al. Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: Pulsed electromagnetic fields therapy. Eur. J. Radiol. 82(3), 530-537 (2013
-
(2013)
Eur. J. Radiol
, vol.82
, Issue.3
, pp. 530-537
-
-
Marcheggiani Muccioli, G.M.1
Grassi, A.2
Setti, S.3
-
74
-
-
34648816736
-
Expanding use of pulsed electromagnetic field therapies
-
Markov MS. Expanding use of pulsed electromagnetic field therapies. Electromagn. Biol. Med. 26(3), 257-274 (2007
-
(2007)
Electromagn. Biol. Med
, vol.26
, Issue.3
, pp. 257-274
-
-
Markov, M.S.1
-
75
-
-
84901830810
-
Noninvasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: A randomized double-blind pilot study
-
Nelson F, Zvirbulis R, Pilla AA. Noninvasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: A randomized double-blind pilot study. Osteoarthritis Cartilage 20, S174-S174 (2012
-
(2012)
Osteoarthritis Cartilage
, vol.20
-
-
Nelson, F.1
Zvirbulis, R.2
Pilla, A.A.3
-
76
-
-
84859903904
-
Pulsed radiofrequency electromagnetic field therapy: A potential novel treatment of plantar fasciitis
-
Brook J, Dauphinee DM, Korpinen J, Rawe IM. Pulsed radiofrequency electromagnetic field therapy: A potential novel treatment of plantar fasciitis. J. Foot Ankle Surg. 51(3), 312-316 (2012
-
(2012)
J. Foot Ankle Surg
, vol.51
, Issue.3
, pp. 312-316
-
-
Brook, J.1
Dauphinee, D.M.2
Korpinen, J.3
Rawe, I.M.4
-
77
-
-
0035214589
-
Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation
-
De Mattei M, Caruso A, Pezzetti F et al. Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect. Tissue Res. 42(4), 269-279 (2001
-
(2001)
Connect. Tissue Res
, vol.42
, Issue.4
, pp. 269-279
-
-
De Mattei, M.1
Caruso, A.2
Pezzetti, F.3
-
78
-
-
33846379567
-
Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields
-
De Mattei M, Fini M, Setti S et al. Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr. Cartil. 15(2), 163-168 (2007
-
(2007)
Osteoarthr. Cartil
, vol.15
, Issue.2
, pp. 163-168
-
-
De Mattei, M.1
Fini, M.2
Setti, S.3
-
79
-
-
75749131103
-
Can low frequency electromagnetic field help cartilage tissue engineering?
-
Chang CH, Loo ST, Liu HL, Fang HW, Lin HY. Can low frequency electromagnetic field help cartilage tissue engineering? J. Biomed. Mater. Res. A 92(3), 843-851 (2010
-
(2010)
J Biomed. Mater. Res
, vol.A92
, Issue.3
, pp. 843-851
-
-
Chang, C.H.1
Loo, S.T.2
Liu, H.L.3
Fang, H.W.4
Lin, H.Y.5
-
80
-
-
0142186153
-
Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants
-
De Mattei M, Pasello M, Pellati A et al. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect. Tissue Res. 44(3-4), 154-159 (2003
-
(2003)
Connect. Tissue Res
, vol.44
, Issue.3-4
, pp. 154-159
-
-
De Mattei, M.1
Pasello, M.2
Pellati, A.3
-
81
-
-
0036839420
-
Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy
-
Fioravanti A, Nerucci F, Collodel G, Markoll R, Marcolongo R. Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy. Ann. Rheum. Dis. 61(11), 1032-1033 (2002
-
(2002)
Ann. Rheum. Dis
, vol.61
, Issue.11
, pp. 1032-1033
-
-
Fioravanti, A.1
Nerucci, F.2
Collodel, G.3
Markoll, R.4
Marcolongo, R.5
-
82
-
-
33745700455
-
Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent
-
Bobacz K, Graninger WB, Amoyo L, Smolen JS. Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent. Ann. Rheum. Dis. 65(7), 949-951 (2006
-
(2006)
Ann. Rheum. Dis
, vol.65
, Issue.7
, pp. 949-951
-
-
Bobacz, K.1
Graninger, W.B.2
Amoyo, L.3
Smolen, J.S.4
-
83
-
-
80052272699
-
Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants
-
Ongaro A, Pellati A, Masieri FF et al. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32(7), 543-551 (2011
-
(2011)
Bioelectromagnetics
, vol.32
, Issue.7
, pp. 543-551
-
-
Ongaro, A.1
Pellati, A.2
Masieri, F.F.3
-
84
-
-
84857472460
-
Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts
-
Ongaro A, Varani K, Masieri FF et al. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 227(6), 2461-2469 (2012
-
(2012)
J. Cell. Physiol
, vol.227
, Issue.6
, pp. 2461-2469
-
-
Ongaro, A.1
Varani, K.2
Masieri, F.F.3
-
85
-
-
84879365360
-
Functional tissue engineering in articular cartilage repair: Is there a role for electromagnetic biophysical stimulation
-
doi:10.1089/ten. teb.2012.0501 Epub ahead of print
-
Fini M, Pagani S, Giavaresi G et al. Functional tissue engineering in articular cartilage repair: Is there a role for electromagnetic biophysical stimulation? Tissue Eng. Part B Rev. doi:10.1089/ten. teb.2012.0501 (2013) (Epub ahead of print
-
(2013)
Tissue Eng. Part B Rev
-
-
Fini, M.1
Pagani, S.2
Giavaresi, G.3
-
86
-
-
84880953930
-
Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells
-
Epub ahead of print
-
de Girolamo L, Stanco D, Galliera E et al. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem. Biophys. (2013) (Epub ahead of print
-
(2013)
Cell Biochem. Biophys
-
-
De Girolamo, L.1
Stanco, D.2
Galliera, E.3
-
87
-
-
0035078127
-
Current trends in the enhancement of fracture healing
-
Hannouche D, Petite H, Sedel L. Current trends in the enhancement of fracture healing. J. Bone Joint Surg. Br. 83(2), 157-164 (2001
-
(2001)
J. Bone Joint Surg. Br.
, vol.83
, Issue.2
, pp. 157-164
-
-
Hannouche, D.1
Petite, H.2
Sedel, L.3
-
88
-
-
67649556333
-
The science of electrical stimulation therapy for fracture healing
-
Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J. Orthop. 43(2), 127-131 (2009
-
(2009)
Indian J. Orthop
, vol.43
, Issue.2
, pp. 127-131
-
-
Kuzyk, P.R.1
Schemitsch, E.H.2
-
89
-
-
38049088774
-
Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release
-
Callaghan MJ, Chang EI, Seiser N et al. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 121(1), 130-141 (2008
-
(2008)
Plast. Reconstr. Surg
, vol.121
, Issue.1
, pp. 130-141
-
-
Callaghan, M.J.1
Chang, E.I.2
Seiser, N.3
-
90
-
-
0345768759
-
Microcirculatory effects of pulsed electromagnetic fields
-
Smith TL, Wong-Gibbons D, Maultsby J. Microcirculatory effects of pulsed electromagnetic fields. J. Orthop. Res. 22(1), 80-84 (2004
-
(2004)
J. Orthop. Res
, vol.22
, Issue.1
, pp. 80-84
-
-
Smith, T.L.1
Wong-Gibbons, D.2
Maultsby, J.3
-
91
-
-
33748157929
-
Pulsed magnetic field therapy increases tensile strength in a rat Achilles' tendon repair model
-
Strauch B, Patel MK, Rosen DJ, Mahadevia S, Brindzei N, Pilla AA. Pulsed magnetic field therapy increases tensile strength in a rat Achilles' tendon repair model. J. Hand Surg. Am. 31(7), 1131-1135 (2006
-
(2006)
J. Hand Surg. Am.
, vol.31
, Issue.7
, pp. 1131-1135
-
-
Strauch, B.1
Patel, M.K.2
Rosen, D.J.3
Mahadevia, S.4
Brindzei, N.5
Pilla, A.A.6
-
92
-
-
84875215296
-
In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model
-
Nakabayashi A, Kamei N, Sunagawa T et al. In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model. J. Orthop. Res. 31(5), 754-759 (2013
-
(2013)
J. Orthop. Res
, vol.31
, Issue.5
, pp. 754-759
-
-
Nakabayashi, A.1
Kamei, N.2
Sunagawa, T.3
-
93
-
-
84871839755
-
Magnetizable duplex steel stents enable endothelial cell capture
-
Tefft BJ, Gooden JY, Uthamaraj S et al. Magnetizable duplex steel stents enable endothelial cell capture. IEEE Trans. Magn. 49(1), 463-466 (2013
-
(2013)
IEEE Trans Magn
, vol.49
, Issue.1
, pp. 463-466
-
-
Tefft, B.J.1
Gooden, J.Y.2
Uthamaraj, S.3
-
94
-
-
84867545307
-
Transcranial electromagnetic treatment against alzheimer's disease: Why it has the potential to trump alzheimer's disease drug development
-
Arendash GW. Transcranial electromagnetic treatment against Alzheimer's disease: Why it has the potential to trump Alzheimer's disease drug development. J. Alzheimers Dis. 32(2), 243-266 (2012
-
(2012)
J. Alzheimers Dis
, vol.32
, Issue.2
, pp. 243-266
-
-
Arendash, G.W.1
-
95
-
-
84861170092
-
Investigation of radiofrequency induced release kinetics from magnetic hollow silica microspheres
-
Kovaík P, Kremlá Ková Z, Štepáek F. Štěpek F. Investigation of radiofrequency induced release kinetics from magnetic hollow silica microspheres. Microporous Mesoporous Mater. 159, 119 (2012
-
(2012)
Microporous Mesoporous Mater
, vol.159
, Issue.119
-
-
Kovaík, P.1
Kremlá Ková, Z.2
Štepáek, F.3
|