메뉴 건너뛰기




Volumn 8, Issue , 2013, Pages 337-350

Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering

Author keywords

Bottom up; Extracellular matrix scaffolds; Three dimensional; Tissue engineering

Indexed keywords

THREE DIMENSIONAL BIOMIMETIC SCAFFOLD; TISSUE SCAFFOLD; UNCLASSIFIED DRUG;

EID: 84872934827     PISSN: 11769114     EISSN: 11782013     Source Type: Journal    
DOI: 10.2147/IJN.S38635     Document Type: Review
Times cited : (397)

References (112)
  • 1
    • 77956622419 scopus 로고    scopus 로고
    • Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning
    • Chung SW, Ingle NP, Montero GA, Kim SH, King MW. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 2010;6:1958-1967.
    • (2010) Acta Biomater , vol.6 , pp. 1958-1967
    • Chung, S.W.1    Ingle, N.P.2    Montero, G.A.3    Kim, S.H.4    King, M.W.5
  • 2
    • 80051675854 scopus 로고    scopus 로고
    • Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering
    • Lao LH, Wang YJ, Zhu Y, Zhang YY, Gao CY. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011;22:1873-1884.
    • (2011) J Mater Sci Mater Med , vol.22 , pp. 1873-1884
    • Lao, L.H.1    Wang, Y.J.2    Zhu, Y.3    Zhang, Y.Y.4    Gao, C.Y.5
  • 3
    • 76949091192 scopus 로고    scopus 로고
    • Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
    • Soliman S, Pagliari S, Rinaldi A, et al. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater. 2010;6:1227-1237.
    • (2010) Acta Biomater , vol.6 , pp. 1227-1237
    • Soliman, S.1    Pagliari, S.2    Rinaldi, A.3
  • 4
    • 38949189235 scopus 로고    scopus 로고
    • Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery
    • Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater. 2008;4:264-272.
    • (2008) Acta Biomater , vol.4 , pp. 264-272
    • Blaker, J.J.1    Knowles, J.C.2    Day, R.M.3
  • 5
    • 58549084156 scopus 로고    scopus 로고
    • Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction
    • Budyanto L, Goh YQ, Ooi CP. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction. J Mater Sci Mater Med. 2009;20:105-111.
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 105-111
    • Budyanto, L.1    Goh, Y.Q.2    Ooi, C.P.3
  • 6
    • 33646725380 scopus 로고    scopus 로고
    • Preparation of a polyurethane scaffold for tissue engineering made by a combination of salt leaching and freeze-drying of dioxane
    • Heijkants RGJC, Van Tienen TG, De Groot JH, et al. Preparation of a polyurethane scaffold for tissue engineering made by a combination of salt leaching and freeze-drying of dioxane. J Mater Sci. 2006;41: 2423-2428.
    • (2006) J Mater Sci , vol.41 , pp. 2423-2428
    • Heijkants, R.G.J.C.1    van Tienen, T.G.2    de Groot, J.H.3
  • 7
    • 84857864802 scopus 로고    scopus 로고
    • PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: Surface modification and in vitro biological evaluation
    • Sultana N, Wang M. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication. 2012;4:015003.
    • (2012) Biofabrication , vol.4 , pp. 015003
    • Sultana, N.1    Wang, M.2
  • 8
    • 43249121128 scopus 로고    scopus 로고
    • Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: An injectable scaffold for tissue engineering
    • Nagahama K, Ouchi T, Ohya Y. Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Adv Funct Mater. 2008;18: 1220-1231.
    • (2008) Adv Funct Mater , vol.18 , pp. 1220-1231
    • Nagahama, K.1    Ouchi, T.2    Ohya, Y.3
  • 10
    • 56849094972 scopus 로고    scopus 로고
    • Nanostructured biomaterials for regeneration
    • Wei GB, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater. 2008;18:3568-3582.
    • (2008) Adv Funct Mater , vol.18 , pp. 3568-3582
    • Wei, G.B.1    Ma, P.X.2
  • 12
    • 54049107592 scopus 로고    scopus 로고
    • Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies
    • Korossis S, Bolland F, Southgate J, Ingham E, Fisher J. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: implications for augmentation and tissue engineering strategies. Biomaterials. 2009;30:266-275.
    • (2009) Biomaterials , vol.30 , pp. 266-275
    • Korossis, S.1    Bolland, F.2    Southgate, J.3    Ingham, E.4    Fisher, J.5
  • 13
    • 84863438327 scopus 로고    scopus 로고
    • Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering
    • Wimpenny I, Ashammakhi N, Yang Y. Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering. J Tissue Eng Regen Med. 2012;6:536-549.
    • (2012) J Tissue Eng Regen Med , vol.6 , pp. 536-549
    • Wimpenny, I.1    Ashammakhi, N.2    Yang, Y.3
  • 14
    • 84867486363 scopus 로고    scopus 로고
    • Microfluidic hydrogels for tissue engineering
    • Huang GY, Zhou LH, Zhang QC, et al. Microfluidic hydrogels for tissue engineering. Biofabrication. 2011;3:012001.
    • (2011) Biofabrication , vol.3 , pp. 012001
    • Huang, G.Y.1    Zhou, L.H.2    Zhang, Q.C.3
  • 15
    • 34548650403 scopus 로고    scopus 로고
    • The roles of hypoxia in the in vitro engineering of tissues
    • Malda J, Klein TJ, Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13:2153-2162.
    • (2007) Tissue Eng , vol.13 , pp. 2153-2162
    • Malda, J.1    Klein, T.J.2    Upton, Z.3
  • 17
    • 63049121616 scopus 로고    scopus 로고
    • Modular tissue engineering: Engineering biological tissues from the bottom up
    • Nichol JW, Khademhosseini A. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter. 2009;5: 1312-1319.
    • (2009) Soft Matter , vol.5 , pp. 1312-1319
    • Nichol, J.W.1    Khademhosseini, A.2
  • 18
    • 34548056795 scopus 로고    scopus 로고
    • Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels
    • Napolitano AP, Chai P, Dean DM, Morgan JR. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 2007;13:2087-2094.
    • (2007) Tissue Eng , vol.13 , pp. 2087-2094
    • Napolitano, A.P.1    Chai, P.2    Dean, D.M.3    Morgan, J.R.4
  • 19
    • 1942516510 scopus 로고    scopus 로고
    • Cell sheet engineering
    • Yamato M, Okano T. Cell sheet engineering. Mater Today. 2004;7: 42-47.
    • (2004) Mater Today , vol.7 , pp. 42-47
    • Yamato, M.1    Okano, T.2
  • 20
    • 77954847405 scopus 로고    scopus 로고
    • Polymeric aqueous biphasic systems for non-contact cell printing on cells: Engineering heterocellular embryonic stem cell niches
    • Tavana H, Mosadegh B, Takayama S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv Mater. 2010;22:2628-2631.
    • (2010) Adv Mater , vol.22 , pp. 2628-2631
    • Tavana, H.1    Mosadegh, B.2    Takayama, S.3
  • 21
    • 47749117234 scopus 로고    scopus 로고
    • Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs
    • Du YA, Lo E, Ali S, Khademhosseini A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci U S A. 2008;105:9522-9527.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 9522-9527
    • Du, Y.A.1    Lo, E.2    Ali, S.3    Khademhosseini, A.4
  • 22
    • 34748902324 scopus 로고    scopus 로고
    • Microengineered hydrogels for tissue engineering
    • Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials. 2007;28:5087-5092.
    • (2007) Biomaterials , vol.28 , pp. 5087-5092
    • Khademhosseini, A.1    Langer, R.2
  • 23
    • 45849140536 scopus 로고    scopus 로고
    • Guided and fluidic self-assembly of microstructures using railed microfluidic channels
    • Chung SE, Park W, Shin S, Lee SA, Kwon S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater. 2008;7:581-587.
    • (2008) Nat Mater , vol.7 , pp. 581-587
    • Chung, S.E.1    Park, W.2    Shin, S.3    Lee, S.A.4    Kwon, S.5
  • 24
    • 80051822767 scopus 로고    scopus 로고
    • The assembly of cell-encapsulating microscale hydrogels using acoustic waves
    • Xu F, Finley TD, Turkaydin M, et al. The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials. 2011;32: 7847-7855.
    • (2011) Biomaterials , vol.32 , pp. 7847-7855
    • Xu, F.1    Finley, T.D.2    Turkaydin, M.3
  • 25
    • 80054713215 scopus 로고    scopus 로고
    • Three-dimensional magnetic assembly of microscale hydrogels
    • Xu F, Wu C, Rengarajan V, et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater. 2011;23:4254-4460.
    • (2011) Adv Mater , vol.23 , pp. 4254-4460
    • Xu, F.1    Wu, C.2    Rengarajan, V.3
  • 26
    • 77951248994 scopus 로고    scopus 로고
    • Interface-directed self-assembly of cell-laden microgels
    • Zamanian B, Masaeli M, Nichol JW, et al. Interface-directed self-assembly of cell-laden microgels. Small. 2010;6:937-944.
    • (2010) Small , vol.6 , pp. 937-944
    • Zamanian, B.1    Masaeli, M.2    Nichol, J.W.3
  • 27
    • 8844263768 scopus 로고    scopus 로고
    • Nano-fibrous scaffolds for tissue engineering
    • Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2004;39:125-131.
    • (2004) Colloids Surf B Biointerfaces , vol.39 , pp. 125-131
    • Smith, L.A.1    Ma, P.X.2
  • 28
    • 0031042553 scopus 로고    scopus 로고
    • Neutrophil motility in extracellular matrix gels: Mesh size and adhesion affect speed of migration
    • Kuntz RM, Saltzman WM. Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys J. 1997;72:1472-1480.
    • (1997) Biophys J , vol.72 , pp. 1472-1480
    • Kuntz, R.M.1    Saltzman, W.M.2
  • 29
    • 0030232761 scopus 로고    scopus 로고
    • Nanometre diameter fibres of polymer, produced by electrospinning
    • Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216-223.
    • (1996) Nanotechnology , vol.7 , pp. 216-223
    • Reneker, D.H.1    Chun, I.2
  • 30
    • 84862786435 scopus 로고    scopus 로고
    • Preparation and characterization of PLLA/nHA nonwoven mats via laser melt electrospinning
    • Li XY, Liu HC, Wang JN, Li CJ. Preparation and characterization of PLLA/nHA nonwoven mats via laser melt electrospinning. Mater Lett. 2012;73:103-106.
    • (2012) Mater Lett , vol.73 , pp. 103-106
    • Li, X.Y.1    Liu, H.C.2    Wang, J.N.3    Li, C.J.4
  • 31
    • 85027955691 scopus 로고    scopus 로고
    • Characterization and structure analysis of PLGA/collagen nanofibrous membranes by electrospinning
    • Park JS, Choi JB, Jo SY, et al. Characterization and structure analysis of PLGA/collagen nanofibrous membranes by electrospinning. J Appl Polym Sci. 2012;125:595-603.
    • (2012) J Appl Polym Sci , vol.125 , pp. 595-603
    • Park, J.S.1    Choi, J.B.2    Jo, S.Y.3
  • 33
    • 28444435248 scopus 로고    scopus 로고
    • Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing
    • Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452-1461.
    • (2006) Biomaterials , vol.27 , pp. 1452-1461
    • Rho, K.S.1    Jeong, L.2    Lee, G.3
  • 34
    • 0344519690 scopus 로고    scopus 로고
    • Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers
    • Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003;89:341-353.
    • (2003) J Control Release , vol.89 , pp. 341-353
    • Luu, Y.K.1    Kim, K.2    Hsiao, B.S.3    Chu, B.4    Hadjiargyrou, M.5
  • 35
    • 32644479707 scopus 로고    scopus 로고
    • Electrospun silk-BMP-2 scaffolds for bone tissue engineering
    • Li CM, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006; 27:3115-3124.
    • (2006) Biomaterials , vol.27 , pp. 3115-3124
    • Li, C.M.1    Vepari, C.2    Jin, H.J.3    Kim, H.J.4    Kaplan, D.L.5
  • 36
    • 33846889043 scopus 로고    scopus 로고
    • Study of how phase separation by filtration instead of centrifugation affects protein yield and gel quality during an alkaline solubilisation process - different surimi-processing methods
    • Nolsoe H, Imer S, Hultin HO. Study of how phase separation by filtration instead of centrifugation affects protein yield and gel quality during an alkaline solubilisation process - different surimi-processing methods. Int J Food Sci Technol. 2007;42:139-147.
    • (2007) Int J Food Sci Technol , vol.42 , pp. 139-147
    • Nolsoe, H.1    Imer, S.2    Hultin, H.O.3
  • 37
    • 79953310555 scopus 로고    scopus 로고
    • Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review
    • Guillen GR, Pan YJ, Li MH, Hoek EMV. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res. 2011;50:3798-3817.
    • (2011) Ind Eng Chem Res , vol.50 , pp. 3798-3817
    • Guillen, G.R.1    Pan, Y.J.2    Li, M.H.3    Hoek, E.M.V.4
  • 38
    • 0032874505 scopus 로고    scopus 로고
    • Biodegradable polymeric microcellular foams by modified thermally induced phase separation method
    • Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20:1783-1790.
    • (1999) Biomaterials , vol.20 , pp. 1783-1790
    • Nam, Y.S.1    Park, T.G.2
  • 39
    • 84860383551 scopus 로고    scopus 로고
    • Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property
    • Shao JD, Chen C, Wang YJ, Chen XF, Du C. Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. Polym Degrad Stabil. 2012;97:955-963.
    • (2012) Polym Degrad Stabil , vol.97 , pp. 955-963
    • Shao, J.D.1    Chen, C.2    Wang, Y.J.3    Chen, X.F.4    Du, C.5
  • 40
    • 79952420018 scopus 로고    scopus 로고
    • Biomaterials and scaffolds for tissue engineering
    • O'Brien FJ. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011;14:88-95.
    • (2011) Mater Today , vol.14 , pp. 88-95
    • O'Brien, F.J.1
  • 41
    • 1942516513 scopus 로고    scopus 로고
    • Scaffolds for tissue fabrication
    • Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7:30-40.
    • (2004) Mater Today , vol.7 , pp. 30-40
    • Ma, P.X.1
  • 42
    • 0032949079 scopus 로고    scopus 로고
    • Synthetic nano-scale fibrous extracellular matrix
    • Ma PX, Zhang RY. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60-72.
    • (1999) J Biomed Mater Res , vol.46 , pp. 60-72
    • Ma, P.X.1    Zhang, R.Y.2
  • 43
    • 0035255365 scopus 로고    scopus 로고
    • Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds
    • Ma PX, Zhang RY, Xiao GZ, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res. 2001;54:284-293.
    • (2001) J Biomed Mater Res , vol.54 , pp. 284-293
    • Ma, P.X.1    Zhang, R.Y.2    Xiao, G.Z.3    Franceschi, R.4
  • 44
    • 78650518809 scopus 로고    scopus 로고
    • Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique
    • Zhao J, Han W, Chen H, et al. Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique. Carbohydr Polym. 2011;83:1541-1546.
    • (2011) Carbohydr Polym , vol.83 , pp. 1541-1546
    • Zhao, J.1    Han, W.2    Chen, H.3
  • 45
    • 80054002514 scopus 로고    scopus 로고
    • Innovation in monitoring food freeze drying
    • Pisano R, Barresi AA, Fissore D. Innovation in monitoring food freeze drying. Dry Technol. 2011;29:1920-1931.
    • (2011) Dry Technol , vol.29 , pp. 1920-1931
    • Pisano, R.1    Barresi, A.A.2    Fissore, D.3
  • 46
    • 84861895939 scopus 로고    scopus 로고
    • Rarefied gas dynamics aspects of pharmaceutical freeze-drying
    • Ganguly A, Nail SL, Alexeenko AA. Rarefied gas dynamics aspects of pharmaceutical freeze-drying. Vacuum. 2012;86:1739-1747.
    • (2012) Vacuum , vol.86 , pp. 1739-1747
    • Ganguly, A.1    Nail, S.L.2    Alexeenko, A.A.3
  • 47
    • 80955177127 scopus 로고    scopus 로고
    • Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend
    • Liu HH, Nakagawa K, Kato DI, Chaudhary D, Tade MO. Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend. Mater Chem Phys. 2011;129:488-494.
    • (2011) Mater Chem Phys , vol.129 , pp. 488-494
    • Liu, H.H.1    Nakagawa, K.2    Kato, D.I.3    Chaudhary, D.4    Tade, M.O.5
  • 48
    • 77956743694 scopus 로고    scopus 로고
    • Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process
    • Autissier A, Le Visage C, Pouzet C, Chaubet F, Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010;6:3640-3648.
    • (2010) Acta Biomater , vol.6 , pp. 3640-3648
    • Autissier, A.1    Le Visage, C.2    Pouzet, C.3    Chaubet, F.4    Letourneur, D.5
  • 49
    • 84865778116 scopus 로고    scopus 로고
    • Novel gelatin-PHEMA porous scaffolds for tissue engineering applications
    • Dragusin D-M, Van Vlierberghe S, Dubruel P, et al. Novel gelatin-PHEMA porous scaffolds for tissue engineering applications. Soft Matter. 2012;8:9589-9602.
    • (2012) Soft Matter , vol.8 , pp. 9589-9602
    • Dragusin, D.-M.1    van Vlierberghe, S.2    Dubruel, P.3
  • 50
    • 0037192505 scopus 로고    scopus 로고
    • Self-assembly at all scales
    • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418-2421.
    • (2002) Science , vol.295 , pp. 2418-2421
    • Whitesides, G.M.1    Grzybowski, B.2
  • 51
    • 23744507014 scopus 로고    scopus 로고
    • Designer self-assembling peptide nano-fiber scaffolds for 3D tissue cell cultures
    • Zhang SG, Gelain F, Zhao XJ. Designer self-assembling peptide nano-fiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol. 2005;15: 413-420.
    • (2005) Semin Cancer Biol , vol.15 , pp. 413-420
    • Zhang, S.G.1    Gelain, F.2    Zhao, X.J.3
  • 52
    • 37049029660 scopus 로고    scopus 로고
    • Biomimetic materials for tissue engineering
    • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184-198.
    • (2008) Adv Drug Deliv Rev , vol.60 , pp. 184-198
    • Ma, P.X.1
  • 53
    • 78650148591 scopus 로고    scopus 로고
    • Self-assembly and biomaterials
    • Stupp SI. Self-assembly and biomaterials. Nano Lett. 2010;10: 4783-4786.
    • (2010) Nano Lett , vol.10 , pp. 4783-4786
    • Stupp, S.I.1
  • 54
    • 0037117498 scopus 로고    scopus 로고
    • Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials
    • Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A. 2002;99:5133-5318.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 5133-5318
    • Hartgerink, J.D.1    Beniash, E.2    Stupp, S.I.3
  • 55
    • 0035941074 scopus 로고    scopus 로고
    • Self-assembly and mineralization of peptide-amphiphile nanofibers
    • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684-1688.
    • (2001) Science , vol.294 , pp. 1684-1688
    • Hartgerink, J.D.1    Beniash, E.2    Stupp, S.I.3
  • 56
    • 79954995146 scopus 로고    scopus 로고
    • Self-assembly of amphiphilic peptides
    • Hamley IW. Self-assembly of amphiphilic peptides. Soft Matter. 2011;7:4122-4138.
    • (2011) Soft Matter , vol.7 , pp. 4122-4138
    • Hamley, I.W.1
  • 57
    • 79952395760 scopus 로고    scopus 로고
    • Self-assembly of peptides: Influence of substrate, pH and medium on the formation of supramolecular assemblies
    • Kumaraswamy P, Lakshmanan R, Sethuraman S, Krishnan UM. Self-assembly of peptides: influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter. 2011;7:2744-2754.
    • (2011) Soft Matter , vol.7 , pp. 2744-2754
    • Kumaraswamy, P.1    Lakshmanan, R.2    Sethuraman, S.3    Krishnan, U.M.4
  • 58
    • 0026758377 scopus 로고
    • Zuotin, a putative Z-DNA binding-protein in Saccharomyces cerevisiae
    • Zhang SG, Lockshin C, Herbert A, Winter E, Rich A. Zuotin, a putative Z-DNA binding-protein in Saccharomyces cerevisiae. EMBO J. 1992;11:3787-3796.
    • (1992) EMBO J , vol.11 , pp. 3787-3796
    • Zhang, S.G.1    Lockshin, C.2    Herbert, A.3    Winter, E.4    Rich, A.5
  • 59
    • 78349293464 scopus 로고    scopus 로고
    • Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro
    • Liu JP, Song H, Zhang LL, Xu HY, Zhao XJ. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol Biosci. 2010;10:1164-1170.
    • (2010) Macromol Biosci , vol.10 , pp. 1164-1170
    • Liu, J.P.1    Song, H.2    Zhang, L.L.3    Xu, H.Y.4    Zhao, X.J.5
  • 60
    • 78651431026 scopus 로고    scopus 로고
    • Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis
    • Luo ZL, Wang SK, Zhang SG. Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis. Biomaterials. 2011;32:2013-2020.
    • (2011) Biomaterials , vol.32 , pp. 2013-2020
    • Luo, Z.L.1    Wang, S.K.2    Zhang, S.G.3
  • 61
    • 0036139571 scopus 로고    scopus 로고
    • Novel peptide-based biomaterial scaffolds for tissue engineering
    • Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 2002;20:16-21.
    • (2002) Trends Biotechnol , vol.20 , pp. 16-21
    • Holmes, T.C.1
  • 63
    • 67649920749 scopus 로고    scopus 로고
    • Growth factors, matrices, and forces combine and control stem cells
    • Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673-1677.
    • (2009) Science , vol.324 , pp. 1673-1677
    • Discher, D.E.1    Mooney, D.J.2    Zandstra, P.W.3
  • 64
    • 78649444992 scopus 로고    scopus 로고
    • Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro
    • Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials. 2011; 32:1002-1009.
    • (2011) Biomaterials , vol.32 , pp. 1002-1009
    • Young, J.L.1    Engler, A.J.2
  • 65
    • 84858290877 scopus 로고    scopus 로고
    • Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment
    • Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33:3835-3845.
    • (2012) Biomaterials , vol.33 , pp. 3835-3845
    • Toh, W.S.1    Lim, T.C.2    Kurisawa, M.3    Spector, M.4
  • 66
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-689.
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 67
    • 79952752313 scopus 로고    scopus 로고
    • Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering
    • Liu HF, Li XM, Zhou G, Fan HB, Fan YB. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials. 2011;32:3784-3793.
    • (2011) Biomaterials , vol.32 , pp. 3784-3793
    • Liu, H.F.1    Li, X.M.2    Zhou, G.3    Fan, H.B.4    Fan, Y.B.5
  • 68
    • 84862801315 scopus 로고    scopus 로고
    • The impact of PLGA scaffold orientation on in vitro cartilage regeneration
    • Zhang YY, Yang F, Liu K, et al. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials. 2012;33:2926-2935.
    • (2012) Biomaterials , vol.33 , pp. 2926-2935
    • Zhang, Y.Y.1    Yang, F.2    Liu, K.3
  • 69
    • 77953627302 scopus 로고    scopus 로고
    • Recent trends and challenges in complex organ manufacturing
    • Wang XH, Yan YN, Zhang RJ. Recent trends and challenges in complex organ manufacturing. Tissue Eng Part B Rev. 2010;16:189-197.
    • (2010) Tissue Eng Part B Rev , vol.16 , pp. 189-197
    • Wang, X.H.1    Yan, Y.N.2    Zhang, R.J.3
  • 70
    • 79957713859 scopus 로고    scopus 로고
    • Vascularization is the key challenge in tissue engineering
    • Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63:300-311.
    • (2011) Adv Drug Deliv Rev , vol.63 , pp. 300-311
    • Novosel, E.C.1    Kleinhans, C.2    Kluger, P.J.3
  • 71
    • 77957353309 scopus 로고    scopus 로고
    • Engineering more than a cell: Vascularization strategies in tissue engineering
    • Phelps EA, Garcia AJ. Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol. 2010;21: 704-709.
    • (2010) Curr Opin Biotechnol , vol.21 , pp. 704-709
    • Phelps, E.A.1    Garcia, A.J.2
  • 73
    • 80051512166 scopus 로고    scopus 로고
    • Poly(vinyl alcohol) physical hydrogels: Noncryogenic stabilization allows nanoand microscale materials design
    • Jensen BEB, Smith AAA, Fejerskov B, et al. Poly(vinyl alcohol) physical hydrogels: noncryogenic stabilization allows nanoand microscale materials design. Langmuir. 2011;27:10216-10223.
    • (2011) Langmuir , vol.27 , pp. 10216-10223
    • Jensen, B.E.B.1    Smith, A.A.A.2    Fejerskov, B.3
  • 75
    • 80054007023 scopus 로고    scopus 로고
    • Molding micropatterns of elasticity on PEG-based hydrogels to control cell adhesion and migration
    • Diez M, Schulte VA, Stefanoni F, et al. Molding micropatterns of elasticity on PEG-based hydrogels to control cell adhesion and migration. Adv Eng Mater. 2011;13:B395-B404.
    • (2011) Adv Eng Mater , vol.13
    • Diez, M.1    Schulte, V.A.2    Stefanoni, F.3
  • 76
    • 78650093814 scopus 로고    scopus 로고
    • Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels
    • Qi H, Du YA, Wang LY, Kaji H, Bae HJ, Khademhosseini A. Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels. Adv Mater. 2010;22:5276-5281.
    • (2010) Adv Mater , vol.22 , pp. 5276-5281
    • Qi, H.1    Du, Y.A.2    Wang, L.Y.3    Kaji, H.4    Bae, H.J.5    Khademhosseini, A.6
  • 77
    • 77951247563 scopus 로고    scopus 로고
    • Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets
    • Moon S, Hasan SK, Song YS, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods. 2010;16:157-166.
    • (2010) Tissue Eng Part C Methods , vol.16 , pp. 157-166
    • Moon, S.1    Hasan, S.K.2    Song, Y.S.3
  • 78
    • 69549135425 scopus 로고    scopus 로고
    • Sorting directionally oriented microstructures using railed microfluidics
    • Park W, Lee H, Park H, Kwon S. Sorting directionally oriented microstructures using railed microfluidics. Lab Chip. 2009;9:2169-2175.
    • (2009) Lab Chip , vol.9 , pp. 2169-2175
    • Park, W.1    Lee, H.2    Park, H.3    Kwon, S.4
  • 79
    • 79952920197 scopus 로고    scopus 로고
    • Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics
    • Chung SE, Jung Y, Kwon S. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics. Small. 2011;7:796-803.
    • (2011) Small , vol.7 , pp. 796-803
    • Chung, S.E.1    Jung, Y.2    Kwon, S.3
  • 81
    • 77954611588 scopus 로고    scopus 로고
    • Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips
    • Bourquin Y, Reboud J, Wilson R, Cooper JM. Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. Lab Chip. 2010;10:1898-1901.
    • (2010) Lab Chip , vol.10 , pp. 1898-1901
    • Bourquin, Y.1    Reboud, J.2    Wilson, R.3    Cooper, J.M.4
  • 82
    • 64149131345 scopus 로고    scopus 로고
    • Ultrafast microfluidics using surface acoustic waves
    • Yeo LY, Friend JR. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics. 2009;3:12002.
    • (2009) Biomicrofluidics , vol.3 , pp. 12002
    • Yeo, L.Y.1    Friend, J.R.2
  • 83
    • 0032125816 scopus 로고    scopus 로고
    • Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels
    • Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287-1294.
    • (1998) Biomaterials , vol.19 , pp. 1287-1294
    • Cruise, G.M.1    Scharp, D.S.2    Hubbell, J.A.3
  • 84
    • 45149088761 scopus 로고    scopus 로고
    • In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes
    • Yagci Y, Sangermano M, Rizza G. In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chem Commun (Camb). 2008:2771-2773.
    • (2008) Chem Commun (Camb) , pp. 2771-2773
    • Yagci, Y.1    Sangermano, M.2    Rizza, G.3
  • 85
    • 35348874191 scopus 로고    scopus 로고
    • Review: Photopolymerizable and degradable biomaterials for tissue engineering applications
    • Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007;13: 2369-2385.
    • (2007) Tissue Eng , vol.13 , pp. 2369-2385
    • Ifkovits, J.L.1    Burdick, J.A.2
  • 86
    • 77950862626 scopus 로고    scopus 로고
    • Three-dimensional tissue culture based on magnetic cell levitation
    • Souza GR, Molina JR, Raphael RM, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 2010;5: 291-296.
    • (2010) Nat Nanotechnol , vol.5 , pp. 291-296
    • Souza, G.R.1    Molina, J.R.2    Raphael, R.M.3
  • 87
    • 84865598517 scopus 로고    scopus 로고
    • Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials
    • Xu F, Inci F, Mullick O, et al. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS Nano. 2012;6:6640-6649.
    • (2012) ACS Nano , vol.6 , pp. 6640-6649
    • Xu, F.1    Inci, F.2    Mullick, O.3
  • 89
    • 82555202738 scopus 로고    scopus 로고
    • Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering
    • Chung BG, Lee KH, Khademhosseini A, Lee SH. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip. 2012;12:45-59.
    • (2012) Lab Chip , vol.12 , pp. 45-59
    • Chung, B.G.1    Lee, K.H.2    Khademhosseini, A.3    Lee, S.H.4
  • 90
    • 79953239332 scopus 로고    scopus 로고
    • Engineered alginate hydrogels for effective microfluidic capture and release of endothelial progenitor cells from whole blood
    • Hatch A, Hansmann G, Murthy SK. Engineered alginate hydrogels for effective microfluidic capture and release of endothelial progenitor cells from whole blood. Langmuir. 2011;27:4257-4264.
    • (2011) Langmuir , vol.27 , pp. 4257-4264
    • Hatch, A.1    Hansmann, G.2    Murthy, S.K.3
  • 92
    • 34249806021 scopus 로고    scopus 로고
    • Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
    • Golden AP, Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip. 2007;7:720-725.
    • (2007) Lab Chip , vol.7 , pp. 720-725
    • Golden, A.P.1    Tien, J.2
  • 93
    • 33847360659 scopus 로고    scopus 로고
    • Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels
    • Agarwal AK, Dong L, Beebe DJ, Jiang HR. Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip. 2007;7:310-315.
    • (2007) Lab Chip , vol.7 , pp. 310-315
    • Agarwal, A.K.1    Dong, L.2    Beebe, D.J.3    Jiang, H.R.4
  • 94
    • 84867352626 scopus 로고    scopus 로고
    • Cell-encapsulating microfluidic hydrogels with enhanced mechanical stability
    • Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, et al. Cell-encapsulating microfluidic hydrogels with enhanced mechanical stability. Soft Matter. 2012.
    • (2012) Soft Matter
    • Huang, G.1    Zhang, X.2    Xiao, Z.3    Zhang, Q.4    Zhou, J.5    Xu, F.6
  • 95
    • 34249794264 scopus 로고    scopus 로고
    • A cell-laden microfluidic hydrogel
    • Ling Y, Rubin J, Deng Y, et al. A cell-laden microfluidic hydrogel. Lab Chip. 2007;7:756-762.
    • (2007) Lab Chip , vol.7 , pp. 756-762
    • Ling, Y.1    Rubin, J.2    Deng, Y.3
  • 96
    • 77951604536 scopus 로고    scopus 로고
    • On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
    • Lee W, Lee V, Polio S, et al. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng. 2010;105:1178-1186.
    • (2010) Biotechnol Bioeng , vol.105 , pp. 1178-1186
    • Lee, W.1    Lee, V.2    Polio, S.3
  • 97
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30: 5910-5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 98
    • 79959845985 scopus 로고    scopus 로고
    • Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering
    • Jin GR, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011;7:3113-3122.
    • (2011) Acta Biomater , vol.7 , pp. 3113-3122
    • Jin, G.R.1    Prabhakaran, M.P.2    Ramakrishna, S.3
  • 99
    • 79551503319 scopus 로고    scopus 로고
    • Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration
    • Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater. 2011;6:015001.
    • (2011) Biomed Mater , vol.6 , pp. 015001
    • Chandrasekaran, A.R.1    Venugopal, J.2    Sundarrajan, S.3    Ramakrishna, S.4
  • 100
    • 0037159296 scopus 로고    scopus 로고
    • Microand nanostructured surface morphology on electrospun polymer fibers
    • Megelski S, Stephens JS, Chase DB, Rabolt JF. Microand nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35:8456-8466.
    • (2002) Macromolecules , vol.35 , pp. 8456-8466
    • Megelski, S.1    Stephens, J.S.2    Chase, D.B.3    Rabolt, J.F.4
  • 101
    • 33746080463 scopus 로고    scopus 로고
    • Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro
    • Shin HJ, Lee CH, Cho IH, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomat Sci Polym Ed. 2006;17:103-119.
    • (2006) J Biomat Sci Polym Ed , vol.17 , pp. 103-119
    • Shin, H.J.1    Lee, C.H.2    Cho, I.H.3
  • 102
    • 29144465088 scopus 로고    scopus 로고
    • Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers
    • You Y, Youk JH, Lee SW, Min BM, Lee SJ, Park WH. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett. 2006;60:757-760.
    • (2006) Mater Lett , vol.60 , pp. 757-760
    • You, Y.1    Youk, J.H.2    Lee, S.W.3    Min, B.M.4    Lee, S.J.5    Park, W.H.6
  • 103
    • 56449087188 scopus 로고    scopus 로고
    • The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction
    • Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009;30:583-588.
    • (2009) Biomaterials , vol.30 , pp. 583-588
    • Tillman, B.W.1    Yazdani, S.K.2    Lee, S.J.3    Geary, R.L.4    Atala, A.5    Yoo, J.J.6
  • 104
    • 79952200343 scopus 로고    scopus 로고
    • Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning
    • Yang WJ, Fu J, Wang DX, et al. Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning. J Biomed Nanotechnol. 2010;6:254-259.
    • (2010) J Biomed Nanotechnol , vol.6 , pp. 254-259
    • Yang, W.J.1    Fu, J.2    Wang, D.X.3
  • 105
    • 79953660718 scopus 로고    scopus 로고
    • Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration
    • Cooper A, Bhattarai N, Zhang MQ. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohydr Polym. 2011;85:149-156.
    • (2011) Carbohydr Polym , vol.85 , pp. 149-156
    • Cooper, A.1    Bhattarai, N.2    Zhang, M.Q.3
  • 106
    • 79955032200 scopus 로고    scopus 로고
    • Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior
    • Wei K, Li Y, Kim KO, et al. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J Biomed Mater Res A. 2011;97A:272-280.
    • (2011) J Biomed Mater Res A , vol.97 A , pp. 272-280
    • Wei, K.1    Li, Y.2    Kim, K.O.3
  • 107
    • 0001266573 scopus 로고
    • Thermally induced phase separation behavior of compatible polymer mixtures
    • Nishi T, Wang TT, Kwei TK. Thermally induced phase separation behavior of compatible polymer mixtures. Macromolecules. 1975;8: 227-234.
    • (1975) Macromolecules , vol.8 , pp. 227-234
    • Nishi, T.1    Wang, T.T.2    Kwei, T.K.3
  • 108
    • 82955207725 scopus 로고    scopus 로고
    • Homogeneous chitosan/poly(L-lactide) composite scaffolds prepared by emulsion freeze-drying
    • Niu XF, Li XM, Liu HF, et al. Homogeneous chitosan/poly(L-lactide) composite scaffolds prepared by emulsion freeze-drying. J Biomater Sci Polym Ed. 2012;23:391-404.
    • (2012) J Biomater Sci Polym Ed , vol.23 , pp. 391-404
    • Niu, X.F.1    Li, X.M.2    Liu, H.F.3
  • 110
    • 0019826258 scopus 로고
    • Freeze-drying shrinkage of glutaraldehyde fixed liver
    • Boyde A, Franc F. Freeze-drying shrinkage of glutaraldehyde fixed liver. J Microsc. 1981;122:75-86.
    • (1981) J Microsc , vol.122 , pp. 75-86
    • Boyde, A.1    Franc, F.2
  • 111
    • 77957358085 scopus 로고    scopus 로고
    • Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes
    • Haugh MG, Murphy CM, O'Brien FJ. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng Part C Methods. 2010;16:887-894.
    • (2010) Tissue Eng Part C Methods , vol.16 , pp. 887-894
    • Haugh, M.G.1    Murphy, C.M.2    O'Brien, F.J.3
  • 112
    • 82555176773 scopus 로고    scopus 로고
    • Modulating self-assembly of a nanotape-forming peptide amphiphile with an oppositely charged surfactant
    • Castelletto V, Hamley IW, Adamcik J, Mezzenga R, Gummel J. Modulating self-assembly of a nanotape-forming peptide amphiphile with an oppositely charged surfactant. Soft Matter. 2012;8:217-226.
    • (2012) Soft Matter , vol.8 , pp. 217-226
    • Castelletto, V.1    Hamley, I.W.2    Adamcik, J.3    Mezzenga, R.4    Gummel, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.