메뉴 건너뛰기




Volumn 36, Issue 8, 2013, Pages 460-470

Epigenetic layers and players underlying neurodevelopment

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN BINDING PROTEIN; DNA METHYLTRANSFERASE 1; DNA METHYLTRANSFERASE 3A; HISTONE H1; HISTONE H3; METHYL CPG BINDING PROTEIN 2; PROTEOME; RESTRICTION ENDONUCLEASE; UNTRANSLATED RNA;

EID: 84881030335     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2013.05.001     Document Type: Review
Times cited : (69)

References (116)
  • 1
    • 80053270332 scopus 로고    scopus 로고
    • Neuronal activity modifies the DNA methylation landscape in the adult brain
    • Guo J.U., et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 2011, 14:1345-1351.
    • (2011) Nat. Neurosci. , vol.14 , pp. 1345-1351
    • Guo, J.U.1
  • 2
    • 38349044361 scopus 로고    scopus 로고
    • Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation
    • Nelson E.D., et al. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J. Neurosci. 2008, 28:395-406.
    • (2008) J. Neurosci. , vol.28 , pp. 395-406
    • Nelson, E.D.1
  • 3
    • 80053493397 scopus 로고    scopus 로고
    • Large-scale methylation domains mark a functional subset of neuronally expressed genes
    • Schroeder D.I., et al. Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res. 2011, 21:1583-1591.
    • (2011) Genome Res. , vol.21 , pp. 1583-1591
    • Schroeder, D.I.1
  • 4
    • 78649632841 scopus 로고    scopus 로고
    • Evolving role of MeCP2 in Rett syndrome and autism
    • LaSalle J.M., Yasui D.H. Evolving role of MeCP2 in Rett syndrome and autism. Epigenomics 2009, 1:119-130.
    • (2009) Epigenomics , vol.1 , pp. 119-130
    • LaSalle, J.M.1    Yasui, D.H.2
  • 5
    • 84857331867 scopus 로고    scopus 로고
    • Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome
    • Xie W., et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 2012, 148:816-831.
    • (2012) Cell , vol.148 , pp. 816-831
    • Xie, W.1
  • 6
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
    • (2009) Science , vol.324 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2
  • 7
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 8
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
    • Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
    • (2010) Nature , vol.466 , pp. 1129-1133
    • Ito, S.1
  • 9
    • 80052473600 scopus 로고    scopus 로고
    • Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development
    • Ruzov A., et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 2011, 21:1332-1342.
    • (2011) Cell Res. , vol.21 , pp. 1332-1342
    • Ruzov, A.1
  • 10
    • 79960249232 scopus 로고    scopus 로고
    • Genomic mapping of 5-hydroxymethylcytosine in the human brain
    • Jin S.G., et al. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 2011, 39:5015-5024.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 5015-5024
    • Jin, S.G.1
  • 11
    • 77952967431 scopus 로고    scopus 로고
    • Direct detection of DNA methylation during single-molecule, real-time sequencing
    • Flusberg B.A., et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 2010, 7:461-465.
    • (2010) Nat. Methods , vol.7 , pp. 461-465
    • Flusberg, B.A.1
  • 12
    • 0028133293 scopus 로고
    • Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region
    • Sutcliffe J.S., et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat. Genet. 1994, 8:52-58.
    • (1994) Nat. Genet. , vol.8 , pp. 52-58
    • Sutcliffe, J.S.1
  • 13
    • 10144234124 scopus 로고    scopus 로고
    • Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene
    • Dittrich B., et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat. Genet. 1996, 14:163-170.
    • (1996) Nat. Genet. , vol.14 , pp. 163-170
    • Dittrich, B.1
  • 14
    • 33847304609 scopus 로고    scopus 로고
    • Gene body-specific methylation on the active X chromosome
    • Hellman A., Chess A. Gene body-specific methylation on the active X chromosome. Science 2007, 315:1141-1143.
    • (2007) Science , vol.315 , pp. 1141-1143
    • Hellman, A.1    Chess, A.2
  • 15
    • 58849091905 scopus 로고    scopus 로고
    • A human B cell methylome at 100-base pair resolution
    • Rauch T.A., et al. A human B cell methylome at 100-base pair resolution. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:671-678.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 671-678
    • Rauch, T.A.1
  • 16
    • 70450217879 scopus 로고    scopus 로고
    • Human DNA methylomes at base resolution show widespread epigenomic differences
    • Lister R., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462:315-322.
    • (2009) Nature , vol.462 , pp. 315-322
    • Lister, R.1
  • 17
  • 18
    • 16444381345 scopus 로고    scopus 로고
    • Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system
    • Feng J., et al. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res. 2005, 79:734-746.
    • (2005) J. Neurosci. Res. , vol.79 , pp. 734-746
    • Feng, J.1
  • 19
    • 77950187447 scopus 로고    scopus 로고
    • Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons
    • Feng J., et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 2010, 13:423-430.
    • (2010) Nat. Neurosci. , vol.13 , pp. 423-430
    • Feng, J.1
  • 20
    • 33847614418 scopus 로고    scopus 로고
    • Covalent modification of DNA regulates memory formation
    • Miller C.A., Sweatt J.D. Covalent modification of DNA regulates memory formation. Neuron 2007, 53:857-869.
    • (2007) Neuron , vol.53 , pp. 857-869
    • Miller, C.A.1    Sweatt, J.D.2
  • 21
    • 77956139754 scopus 로고    scopus 로고
    • Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens
    • LaPlant Q., et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 2010, 13:1137-1143.
    • (2010) Nat. Neurosci. , vol.13 , pp. 1137-1143
    • LaPlant, Q.1
  • 22
    • 77954842322 scopus 로고    scopus 로고
    • Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes
    • Wu H., et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 2010, 329:444-448.
    • (2010) Science , vol.329 , pp. 444-448
    • Wu, H.1
  • 23
    • 0242300612 scopus 로고    scopus 로고
    • DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
    • Martinowich K., et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003, 302:890-893.
    • (2003) Science , vol.302 , pp. 890-893
    • Martinowich, K.1
  • 24
    • 77952886110 scopus 로고    scopus 로고
    • Cortical DNA methylation maintains remote memory
    • Miller C.A., et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 2010, 13:664-666.
    • (2010) Nat. Neurosci. , vol.13 , pp. 664-666
    • Miller, C.A.1
  • 25
    • 79955538247 scopus 로고    scopus 로고
    • Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
    • Guo J.U., et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
    • (2011) Cell , vol.145 , pp. 423-434
    • Guo, J.U.1
  • 26
    • 84871563384 scopus 로고    scopus 로고
    • MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
    • Mellen M., et al. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 2012, 151:1417-1430.
    • (2012) Cell , vol.151 , pp. 1417-1430
    • Mellen, M.1
  • 27
    • 78649849473 scopus 로고    scopus 로고
    • REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions
    • Qureshi I.A., et al. REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 2010, 9:4477-4486.
    • (2010) Cell Cycle , vol.9 , pp. 4477-4486
    • Qureshi, I.A.1
  • 28
    • 76849094693 scopus 로고    scopus 로고
    • Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state
    • Skene P.J., et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 2010, 37:457-468.
    • (2010) Mol. Cell , vol.37 , pp. 457-468
    • Skene, P.J.1
  • 29
    • 79955583542 scopus 로고    scopus 로고
    • Mapping and analysis of chromatin state dynamics in nine human cell types
    • Ernst J., et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473:43-49.
    • (2011) Nature , vol.473 , pp. 43-49
    • Ernst, J.1
  • 30
    • 79952539053 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling: genetics, genomics and mechanisms
    • Hargreaves D.C., Crabtree G.R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011, 21:396-420.
    • (2011) Cell Res. , vol.21 , pp. 396-420
    • Hargreaves, D.C.1    Crabtree, G.R.2
  • 31
    • 0029827343 scopus 로고    scopus 로고
    • ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome
    • Picketts D.J., et al. ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 1996, 5:1899-1907.
    • (1996) Hum. Mol. Genet. , vol.5 , pp. 1899-1907
    • Picketts, D.J.1
  • 32
    • 76249083210 scopus 로고    scopus 로고
    • ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain
    • Kernohan K.D., et al. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev. Cell 2010, 18:191-202.
    • (2010) Dev. Cell , vol.18 , pp. 191-202
    • Kernohan, K.D.1
  • 33
    • 84865071031 scopus 로고    scopus 로고
    • Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B
    • Halgren C., et al. Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Clin. Genet. 2012, 82:248-255.
    • (2012) Clin. Genet. , vol.82 , pp. 248-255
    • Halgren, C.1
  • 34
    • 0036791792 scopus 로고    scopus 로고
    • Identification of a polymorphic, neuron-specific chromatin remodeling complex
    • Olave I., et al. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 2002, 16:2509-2517.
    • (2002) Genes Dev. , vol.16 , pp. 2509-2517
    • Olave, I.1
  • 35
    • 84876903184 scopus 로고    scopus 로고
    • The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory
    • Vogel-Ciernia A., et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 2013, 16:552-561.
    • (2013) Nat. Neurosci. , vol.16 , pp. 552-561
    • Vogel-Ciernia, A.1
  • 36
    • 84860371870 scopus 로고    scopus 로고
    • Combinatorial complexity in chromatin structure and function: revisiting the histone code
    • Rando O.J. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 2012, 22:148-155.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 148-155
    • Rando, O.J.1
  • 37
    • 79952343120 scopus 로고    scopus 로고
    • CRACKing the histone code: cocaine's effects on chromatin structure and function
    • LaPlant Q., Nestler E.J. CRACKing the histone code: cocaine's effects on chromatin structure and function. Horm. Behav. 2011, 59:321-330.
    • (2011) Horm. Behav. , vol.59 , pp. 321-330
    • LaPlant, Q.1    Nestler, E.J.2
  • 38
    • 15744396813 scopus 로고    scopus 로고
    • The key to development: interpreting the histone code?
    • Margueron R., et al. The key to development: interpreting the histone code?. Curr. Opin. Genet. Dev. 2005, 15:163-176.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 163-176
    • Margueron, R.1
  • 39
    • 84876888289 scopus 로고    scopus 로고
    • Epigenetics: core misconcept
    • Ptashne M. Epigenetics: core misconcept. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7101-7103.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7101-7103
    • Ptashne, M.1
  • 40
    • 33947302685 scopus 로고    scopus 로고
    • The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases
    • Iwase S., et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007, 128:1077-1088.
    • (2007) Cell , vol.128 , pp. 1077-1088
    • Iwase, S.1
  • 41
    • 34249900454 scopus 로고    scopus 로고
    • The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation
    • Tahiliani M., et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007, 447:601-605.
    • (2007) Nature , vol.447 , pp. 601-605
    • Tahiliani, M.1
  • 42
    • 84866108697 scopus 로고    scopus 로고
    • Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation
    • Lee B.K., Iyer V.R. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J. Biol. Chem. 2012, 287:30906-30913.
    • (2012) J. Biol. Chem. , vol.287 , pp. 30906-30913
    • Lee, B.K.1    Iyer, V.R.2
  • 43
    • 84860376812 scopus 로고    scopus 로고
    • Identification of CTCF as a master regulator of the clustered protocadherin genes
    • Golan-Mashiach M., et al. Identification of CTCF as a master regulator of the clustered protocadherin genes. Nucleic Acids Res. 2012, 40:3378-3391.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 3378-3391
    • Golan-Mashiach, M.1
  • 44
    • 80455176999 scopus 로고    scopus 로고
    • CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
    • Shukla S., et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74-79.
    • (2011) Nature , vol.479 , pp. 74-79
    • Shukla, S.1
  • 45
    • 84857251182 scopus 로고    scopus 로고
    • CTCF: insights into insulator function during development
    • Herold M., et al. CTCF: insights into insulator function during development. Development 2012, 139:1045-1057.
    • (2012) Development , vol.139 , pp. 1045-1057
    • Herold, M.1
  • 46
    • 77953545864 scopus 로고    scopus 로고
    • The role of MeCP2 in brain development and neurodevelopmental disorders
    • Gonzales M.L., LaSalle J.M. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr. Psychiatry Rep. 2010, 12:127-134.
    • (2010) Curr. Psychiatry Rep. , vol.12 , pp. 127-134
    • Gonzales, M.L.1    LaSalle, J.M.2
  • 48
    • 79952698982 scopus 로고    scopus 로고
    • The role of MeCP2 in CNS development and function
    • Na E.S., Monteggia L.M. The role of MeCP2 in CNS development and function. Horm. Behav. 2011, 59:364-368.
    • (2011) Horm. Behav. , vol.59 , pp. 364-368
    • Na, E.S.1    Monteggia, L.M.2
  • 49
    • 0032830639 scopus 로고    scopus 로고
    • Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2
    • Amir R.E., et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 1999, 23:185-188.
    • (1999) Nat. Genet. , vol.23 , pp. 185-188
    • Amir, R.E.1
  • 50
    • 84864003941 scopus 로고    scopus 로고
    • Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation
    • Gonzales M.L., et al. Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol. Cell. Biol. 2012, 32:2894-2903.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2894-2903
    • Gonzales, M.L.1
  • 51
    • 77956167928 scopus 로고    scopus 로고
    • MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants
    • Deng J.V., et al. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat. Neurosci. 2010, 13:1128-1136.
    • (2010) Nat. Neurosci. , vol.13 , pp. 1128-1136
    • Deng, J.V.1
  • 52
    • 84866252444 scopus 로고    scopus 로고
    • MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5
    • Zhong X., et al. MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5. J. Neurosci. 2012, 32:12841-12847.
    • (2012) J. Neurosci. , vol.32 , pp. 12841-12847
    • Zhong, X.1
  • 53
    • 84871069553 scopus 로고    scopus 로고
    • Epigenetic regulation by long noncoding RNAs
    • Lee J.T. Epigenetic regulation by long noncoding RNAs. Science 2012, 338:1435-1439.
    • (2012) Science , vol.338 , pp. 1435-1439
    • Lee, J.T.1
  • 54
    • 80053045739 scopus 로고    scopus 로고
    • Molecular mechanisms of long noncoding RNAs
    • Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43:904-914.
    • (2011) Mol. Cell , vol.43 , pp. 904-914
    • Wang, K.C.1    Chang, H.Y.2
  • 56
    • 34250160256 scopus 로고    scopus 로고
    • RNA maps reveal new RNA classes and a possible function for pervasive transcription
    • Kapranov P., et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316:1484-1488.
    • (2007) Science , vol.316 , pp. 1484-1488
    • Kapranov, P.1
  • 57
    • 67650921949 scopus 로고    scopus 로고
    • Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
    • Khalil A.M., et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:11667-11672.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 11667-11672
    • Khalil, A.M.1
  • 58
    • 62249133709 scopus 로고    scopus 로고
    • Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
    • Guttman M., et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458:223-227.
    • (2009) Nature , vol.458 , pp. 223-227
    • Guttman, M.1
  • 59
    • 84857836107 scopus 로고    scopus 로고
    • Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis
    • Pauli A., et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012, 22:577-591.
    • (2012) Genome Res. , vol.22 , pp. 577-591
    • Pauli, A.1
  • 60
    • 84875200257 scopus 로고    scopus 로고
    • Long noncoding RNAs: cellular address codes in development and disease
    • Batista P.J., Chang H.Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013, 152:1298-1307.
    • (2013) Cell , vol.152 , pp. 1298-1307
    • Batista, P.J.1    Chang, H.Y.2
  • 61
    • 77952367798 scopus 로고    scopus 로고
    • Widespread transcription at neuronal activity-regulated enhancers
    • Kim T.K., et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465:182-187.
    • (2010) Nature , vol.465 , pp. 182-187
    • Kim, T.K.1
  • 62
    • 84875369248 scopus 로고    scopus 로고
    • Circular RNAs are a large class of animal RNAs with regulatory potency
    • Memczak S., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495:333-338.
    • (2013) Nature , vol.495 , pp. 333-338
    • Memczak, S.1
  • 63
    • 36448969801 scopus 로고    scopus 로고
    • Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA
    • Klein M.E., et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat. Neurosci. 2007, 10:1513-1514.
    • (2007) Nat. Neurosci. , vol.10 , pp. 1513-1514
    • Klein, M.E.1
  • 64
    • 84874895206 scopus 로고    scopus 로고
    • Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p
    • Han K., et al. Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev. 2013, 27:485-490.
    • (2013) Genes Dev. , vol.27 , pp. 485-490
    • Han, K.1
  • 65
    • 77956882723 scopus 로고    scopus 로고
    • A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression
    • Bernard D., et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010, 29:3082-3093.
    • (2010) EMBO J. , vol.29 , pp. 3082-3093
    • Bernard, D.1
  • 66
    • 79961170994 scopus 로고    scopus 로고
    • A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
    • Salmena L., et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 2011, 146:353-358.
    • (2011) Cell , vol.146 , pp. 353-358
    • Salmena, L.1
  • 67
    • 38649114329 scopus 로고    scopus 로고
    • Specific expression of long noncoding RNAs in the mouse brain
    • Mercer T.R., et al. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:716-721.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 716-721
    • Mercer, T.R.1
  • 68
    • 84856492490 scopus 로고    scopus 로고
    • Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors
    • Ng S.Y., et al. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012, 31:522-533.
    • (2012) EMBO J. , vol.31 , pp. 522-533
    • Ng, S.Y.1
  • 69
    • 76649122999 scopus 로고    scopus 로고
    • Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation
    • Mercer T.R., et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010, 11:14.
    • (2010) BMC Neurosci. , vol.11 , pp. 14
    • Mercer, T.R.1
  • 70
    • 77951945884 scopus 로고    scopus 로고
    • The long noncoding RNA RNCR2 directs mouse retinal cell specification
    • Rapicavoli N.A., et al. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev. Biol. 2010, 10:49.
    • (2010) BMC Dev. Biol. , vol.10 , pp. 49
    • Rapicavoli, N.A.1
  • 71
    • 80053172782 scopus 로고    scopus 로고
    • The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity
    • Rapicavoli N.A., et al. The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev. 2011, 6:32.
    • (2011) Neural Dev. , vol.6 , pp. 32
    • Rapicavoli, N.A.1
  • 72
    • 78650253763 scopus 로고    scopus 로고
    • Genome-wide identification of polycomb-associated RNAs by RIP-seq
    • Zhao J., et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 2010, 40:939-953.
    • (2010) Mol. Cell , vol.40 , pp. 939-953
    • Zhao, J.1
  • 73
    • 66349089138 scopus 로고    scopus 로고
    • Non-coding RNAs in polycomb/trithorax regulation
    • Hekimoglu B., Ringrose L. Non-coding RNAs in polycomb/trithorax regulation. RNA Biol. 2009, 6:129-137.
    • (2009) RNA Biol. , vol.6 , pp. 129-137
    • Hekimoglu, B.1    Ringrose, L.2
  • 74
    • 77957243921 scopus 로고    scopus 로고
    • Long noncoding RNAs with enhancer-like function in human cells
    • Orom U.A., et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010, 143:46-58.
    • (2010) Cell , vol.143 , pp. 46-58
    • Orom, U.A.1
  • 75
    • 60149092541 scopus 로고    scopus 로고
    • The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing
    • Redrup L., et al. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 2009, 136:525-530.
    • (2009) Development , vol.136 , pp. 525-530
    • Redrup, L.1
  • 76
    • 54049138948 scopus 로고    scopus 로고
    • Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation
    • Pandey R.R., et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 2008, 32:232-246.
    • (2008) Mol. Cell , vol.32 , pp. 232-246
    • Pandey, R.R.1
  • 77
    • 80054756754 scopus 로고    scopus 로고
    • Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
    • Chu C., et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 2011, 44:667-678.
    • (2011) Mol. Cell , vol.44 , pp. 667-678
    • Chu, C.1
  • 78
    • 34250729138 scopus 로고    scopus 로고
    • Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
    • Rinn J.L., et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129:1311-1323.
    • (2007) Cell , vol.129 , pp. 1311-1323
    • Rinn, J.L.1
  • 79
    • 72449205602 scopus 로고    scopus 로고
    • Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays
    • Vitali P., et al. Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. J. Cell Sci. 2010, 123:70-83.
    • (2010) J. Cell Sci. , vol.123 , pp. 70-83
    • Vitali, P.1
  • 80
    • 70350674351 scopus 로고    scopus 로고
    • Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size
    • Leung K.N., et al. Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum. Mol. Genet. 2009, 18:4227-4238.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 4227-4238
    • Leung, K.N.1
  • 81
    • 84871060911 scopus 로고    scopus 로고
    • Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing
    • Latos P.A., et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 2012, 338:1469-1472.
    • (2012) Science , vol.338 , pp. 1469-1472
    • Latos, P.A.1
  • 82
    • 0032067559 scopus 로고    scopus 로고
    • An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript
    • Rougeulle C., et al. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat. Genet. 1998, 19:15-16.
    • (1998) Nat. Genet. , vol.19 , pp. 15-16
    • Rougeulle, C.1
  • 83
    • 79954595669 scopus 로고    scopus 로고
    • Highly parallel SNP genotyping reveals high-resolution landscape of mono-allelic Ube3a expression associated with locus-wide antisense transcription
    • Numata K., et al. Highly parallel SNP genotyping reveals high-resolution landscape of mono-allelic Ube3a expression associated with locus-wide antisense transcription. Nucleic Acids Res. 2011, 39:2649-2657.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2649-2657
    • Numata, K.1
  • 84
    • 84874368349 scopus 로고    scopus 로고
    • Activating RNAs associate with Mediator to enhance chromatin architecture and transcription
    • Lai F., et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 2013, 494:497-501.
    • (2013) Nature , vol.494 , pp. 497-501
    • Lai, F.1
  • 85
    • 84859087611 scopus 로고    scopus 로고
    • R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
    • Ginno P.A., et al. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 2012, 45:814-825.
    • (2012) Mol. Cell , vol.45 , pp. 814-825
    • Ginno, P.A.1
  • 86
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 87
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal A., et al. The long-range interaction landscape of gene promoters. Nature 2012, 489:109-113.
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1
  • 88
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon J.R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 89
    • 80054110441 scopus 로고    scopus 로고
    • The dynamic architecture of Hox gene clusters
    • Noordermeer D., et al. The dynamic architecture of Hox gene clusters. Science 2011, 334:222-225.
    • (2011) Science , vol.334 , pp. 222-225
    • Noordermeer, D.1
  • 90
    • 84864462544 scopus 로고    scopus 로고
    • A map of the cis-regulatory sequences in the mouse genome
    • Shen Y., et al. A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488:116-120.
    • (2012) Nature , vol.488 , pp. 116-120
    • Shen, Y.1
  • 91
    • 80054957569 scopus 로고    scopus 로고
    • 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain
    • Yasui D.H., et al. 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum. Mol. Genet. 2011, 20:4311-4323.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 4311-4323
    • Yasui, D.H.1
  • 92
    • 80052783934 scopus 로고    scopus 로고
    • Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome
    • Meguro-Horike M., et al. Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome. Hum. Mol. Genet. 2011, 20:3798-3810.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 3798-3810
    • Meguro-Horike, M.1
  • 93
    • 11244328520 scopus 로고    scopus 로고
    • Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome
    • Horike S., et al. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 2005, 37:31-40.
    • (2005) Nat. Genet. , vol.37 , pp. 31-40
    • Horike, S.1
  • 94
    • 45849146938 scopus 로고    scopus 로고
    • Chromatin and nuclear architecture in the nervous system
    • Takizawa T., Meshorer E. Chromatin and nuclear architecture in the nervous system. Trends Neurosci. 2008, 31:343-352.
    • (2008) Trends Neurosci. , vol.31 , pp. 343-352
    • Takizawa, T.1    Meshorer, E.2
  • 95
    • 33646526019 scopus 로고    scopus 로고
    • Chromosome territories-a functional nuclear landscape
    • Cremer T., et al. Chromosome territories-a functional nuclear landscape. Curr. Opin. Cell Biol. 2006, 18:307-316.
    • (2006) Curr. Opin. Cell Biol. , vol.18 , pp. 307-316
    • Cremer, T.1
  • 96
    • 82955163171 scopus 로고    scopus 로고
    • Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis
    • Boyle S., et al. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 2011, 19:901-909.
    • (2011) Chromosome Res. , vol.19 , pp. 901-909
    • Boyle, S.1
  • 97
    • 0033546210 scopus 로고    scopus 로고
    • The organization of replication and transcription
    • Cook P.R. The organization of replication and transcription. Science 1999, 284:1790-1795.
    • (1999) Science , vol.284 , pp. 1790-1795
    • Cook, P.R.1
  • 98
    • 67650064596 scopus 로고    scopus 로고
    • Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up-regulate gene expression
    • Morey C., et al. Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up-regulate gene expression. Genome Res. 2009, 19:1184-1194.
    • (2009) Genome Res. , vol.19 , pp. 1184-1194
    • Morey, C.1
  • 99
    • 15544382113 scopus 로고    scopus 로고
    • Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples
    • Thatcher K.N., et al. Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples. Hum. Mol. Genet. 2005, 14:785-797.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 785-797
    • Thatcher, K.N.1
  • 100
    • 62149112931 scopus 로고    scopus 로고
    • Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number
    • Hogart A., et al. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J. Med. Genet. 2009, 46:86-93.
    • (2009) J. Med. Genet. , vol.46 , pp. 86-93
    • Hogart, A.1
  • 101
    • 84863632595 scopus 로고    scopus 로고
    • Pairing of homologous regions in the mouse genome is associated with transcription but not imprinting status
    • Krueger C., et al. Pairing of homologous regions in the mouse genome is associated with transcription but not imprinting status. PLoS ONE 2012, 7:e38983.
    • (2012) PLoS ONE , vol.7
    • Krueger, C.1
  • 102
    • 0036642103 scopus 로고    scopus 로고
    • Metastable epialleles in mammals
    • Rakyan V.K., et al. Metastable epialleles in mammals. Trends Genet. 2002, 18:348-351.
    • (2002) Trends Genet. , vol.18 , pp. 348-351
    • Rakyan, V.K.1
  • 103
    • 23044514626 scopus 로고    scopus 로고
    • Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells
    • Weber M., et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 2005, 37:853-862.
    • (2005) Nat. Genet. , vol.37 , pp. 853-862
    • Weber, M.1
  • 104
    • 32044455298 scopus 로고    scopus 로고
    • Large-scale structure of genomic methylation patterns
    • Rollins R.A., et al. Large-scale structure of genomic methylation patterns. Genome Res. 2006, 16:157-163.
    • (2006) Genome Res. , vol.16 , pp. 157-163
    • Rollins, R.A.1
  • 105
    • 80052306947 scopus 로고    scopus 로고
    • Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation
    • Gertz J., et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet. 2011, 7:e1002228.
    • (2011) PLoS Genet. , vol.7
    • Gertz, J.1
  • 106
    • 79955538247 scopus 로고    scopus 로고
    • Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
    • Guo J.U., et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
    • (2011) Cell , vol.145 , pp. 423-434
    • Guo, J.U.1
  • 107
    • 0033435205 scopus 로고    scopus 로고
    • The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome
    • Hansen R.S., et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:14412-14417.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 14412-14417
    • Hansen, R.S.1
  • 108
    • 23944503759 scopus 로고    scopus 로고
    • Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males
    • Van Esch H., et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 2005, 77:442-453.
    • (2005) Am. J. Hum. Genet. , vol.77 , pp. 442-453
    • Van Esch, H.1
  • 109
    • 0028939603 scopus 로고
    • Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome)
    • Gibbons R.J., et al. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 1995, 80:837-845.
    • (1995) Cell , vol.80 , pp. 837-845
    • Gibbons, R.J.1
  • 110
    • 79956294419 scopus 로고    scopus 로고
    • Reduced transcript expression of genes affected by inherited and de novo CNVs in autism
    • Nord A.S., et al. Reduced transcript expression of genes affected by inherited and de novo CNVs in autism. Eur. J. Hum. Genet. 2011, 19:727-731.
    • (2011) Eur. J. Hum. Genet. , vol.19 , pp. 727-731
    • Nord, A.S.1
  • 111
    • 33947632990 scopus 로고    scopus 로고
    • Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism
    • Castermans D., et al. Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism. Eur. J. Hum. Genet. 2007, 15:422-431.
    • (2007) Eur. J. Hum. Genet. , vol.15 , pp. 422-431
    • Castermans, D.1
  • 112
    • 19944430270 scopus 로고    scopus 로고
    • Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation
    • Jensen L.R., et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 2005, 76:227-236.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 227-236
    • Jensen, L.R.1
  • 113
    • 33847196427 scopus 로고    scopus 로고
    • Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation
    • Deardorff M.A., et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am. J. Hum. Genet. 2007, 80:485-494.
    • (2007) Am. J. Hum. Genet. , vol.80 , pp. 485-494
    • Deardorff, M.A.1
  • 114
    • 65549113750 scopus 로고    scopus 로고
    • CBP/p300-mediated acetylation of histone H3 on lysine 56
    • Das C., et al. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009, 459:113-117.
    • (2009) Nature , vol.459 , pp. 113-117
    • Das, C.1
  • 115
    • 0029022770 scopus 로고
    • Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP
    • Petrij F., et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995, 376:348-351.
    • (1995) Nature , vol.376 , pp. 348-351
    • Petrij, F.1
  • 116
    • 84864958596 scopus 로고    scopus 로고
    • De novo mutations in MLL cause Wiedemann-Steiner syndrome
    • Jones W.D., et al. De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am. J. Hum. Genet. 2012, 91:358-364.
    • (2012) Am. J. Hum. Genet. , vol.91 , pp. 358-364
    • Jones, W.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.