메뉴 건너뛰기




Volumn 16, Issue 7, 2011, Pages 563-574

Effect of pruning and smoothing while using m5 model tree technique for reservoir inflow prediction

Author keywords

Hydrologic models; India; Inflow; Predictions; Reservoirs

Indexed keywords

AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; DATA SETS; GOODNESS-OF-FIT MEASURE; HYDROLOGIC MODELS; IF-THEN RULES; INDIA; INFLOW; LOW FLOW; M5 MODEL TREE; MODEL VALIDATION; PARTICULAR DISTRIBUTION; PREDICTIONS; PREDICTIVE ACCURACY; RESERVOIR INFLOW PREDICTION; SCATTER PLOTS; TIME STEP; UNIVARIATE; ZERO VALUES;

EID: 79960127215     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000342     Document Type: Article
Times cited : (39)

References (38)
  • 1
    • 0034768520 scopus 로고    scopus 로고
    • Performance of stochastic approaches for forecasting river water quality
    • WARED4, 0097-8078, 10.1016/S0043-1354(01)00167-1
    • Ahmad S. Khan I.H. Parida B.P. Performance of stochastic approaches for forecasting river water quality. Water Resour. 2001, 35(18):4261-4266. WARED4, 0097-8078, 10.1016/S0043-1354(01)00167-1
    • (2001) Water Resour. , vol.35 , Issue.18 , pp. 4261-4266
    • Ahmad, S.1    Khan, I.H.2    Parida, B.P.3
  • 2
    • 28344455955 scopus 로고    scopus 로고
    • An artificial neural network model for generating hydrograph from hydro-meteorological parameters
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.03.032
    • Ahmad S. Simonovic S.P. An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J. Hydrol. (Amsterdam) 2005, 315:236-251. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.03.032
    • (2005) J. Hydrol. (Amsterdam) , vol.315 , pp. 236-251
    • Ahmad, S.1    Simonovic, S.P.2
  • 3
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic streamflow generation
    • WRMAEJ, 0920-4741, 10.1007/s11269-006-9070-y
    • Ahmed J.A. Sarma A.K. Artificial neural network model for synthetic streamflow generation. Water Resour. Manage. 2007, 21(6):1015-1029. WRMAEJ, 0920-4741, 10.1007/s11269-006-9070-y
    • (2007) Water Resour. Manage. , vol.21 , Issue.6 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 4
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • IETAA9, 0018-9286, 10.1109/TAC.1974.1100705
    • Akaike H. new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19(6):716-723. IETAA9, 0018-9286, 10.1109/TAC.1974.1100705
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 6
    • 12144254367 scopus 로고    scopus 로고
    • Application of artificial neural networks and M5 model tree to modeling stage-discharge relationship
    • B. S. Beijing, Z. Y. Wu, G. Q. Wang, G. H. Wang, Huang, J. C. Huang, and eds., Science Press, New York.
    • Bhattacharya B. Solomatine D.P. Application of artificial neural networks and M5 model tree to modeling stage-discharge relationship. Proc., 2nd Int. Symp. on Flood Defence 2002, B. S. Beijing, Z. Y. Wu, G. Q. Wang, G. H. Wang, Huang, J. C. Huang, and eds., Science Press, New York.
    • (2002) Proc., 2nd Int. Symp. on Flood Defence
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 7
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model tree in modeling water level-discharge relationship
    • NRCGEO, 0925-2312, 10.1016/j.neucom.2004.04.016
    • Bhattacharya B. Solomatine D.P. Neural networks and M5 model tree in modeling water level-discharge relationship. Neurocomputing; Var. Star Bull. 2005, 63:381-396. NRCGEO, 0925-2312, 10.1016/j.neucom.2004.04.016
    • (2005) Neurocomputing; Var. Star Bull. , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 10
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • WRERAQ, 0043-1397, 10.1029/1998WR900086
    • Campolo M. Andreussi P. Soldati A. River flood forecasting with neural network model. Water Resour. Res. 1999, 35(4):1191-1197. WRERAQ, 0043-1397, 10.1029/1998WR900086
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 11
    • 65949109499 scopus 로고    scopus 로고
    • Integrating hydrometeorological information for rainfall-runoff modeling by artificial neural networks
    • 10.1002/hyp.7299, HYPRE3, 1099-1085
    • Chiang Y.M. Chang F.J. Integrating hydrometeorological information for rainfall-runoff modeling by artificial neural networks. Hydrol. Processes 2009, 23(11):1650-1659. 10.1002/hyp.7299, HYPRE3, 1099-1085
    • (2009) Hydrol. Processes , vol.23 , Issue.11 , pp. 1650-1659
    • Chiang, Y.M.1    Chang, F.J.2
  • 12
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00214-6
    • Coulibaly P. Anctil F. Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. (Amsterdam) 2000, 230:244-257. JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00214-6
    • (2000) J. Hydrol. (Amsterdam) , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 13
    • 14844292558 scopus 로고    scopus 로고
    • Improving daily reservoir inflow forecasts with model combination
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:2(91)
    • Coulibaly P. Hache M. Fortin V. Bobee B. Improving daily reservoir inflow forecasts with model combination. J. Hydrol. Eng. 2005, 10(2):91-99. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:2(91)
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.2 , pp. 91-99
    • Coulibaly, P.1    Hache, M.2    Fortin, V.3    Bobee, B.4
  • 14
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • WRERAQ, 0043-1397, 10.1029/95WR01955
    • Hsu K.L. Gupta H.V. Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530. WRERAQ, 0043-1397, 10.1029/95WR01955
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 15
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • BIJODN, 1521-4036
    • Ljung G.M. Box G.E. P. On measure of lack of fit in time series models. Biom. J. 1978, 65(2):297-303. BIJODN, 1521-4036
    • (1978) Biom. J. , vol.65 , Issue.2 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 17
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • HSJODN, 0262-6667, 10.1080/02626669609491511
    • Minns A. Hall M. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41(3):399-417. HSJODN, 0262-6667, 10.1080/02626669609491511
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.1    Hall, M.2
  • 18
    • 34249787892 scopus 로고    scopus 로고
    • Seasonal reservoir inflow forecasting with low-frequency climatic indices: A comparison of data-driven methods
    • HSJODN, 0262-6667, 10.1623/hysj.52.3.508
    • Muluye G.Y. Coulibaly P. Seasonal reservoir inflow forecasting with low-frequency climatic indices: comparison of data-driven methods. Hydrol. Sci. J. 2007, 52(3):508-522. HSJODN, 0262-6667, 10.1623/hysj.52.3.508
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.3 , pp. 508-522
    • Muluye, G.Y.1    Coulibaly, P.2
  • 19
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models Part 1-A discussion of principles
    • JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6
    • Nash J.E. Sutcliffe J.V. River flow forecasting through conceptual models Part 1-A discussion of principles. J. Hydrol. (Amsterdam) 1970, 10(3):282-290. JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6
    • (1970) J. Hydrol. (Amsterdam) , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 20
    • 0004264236 scopus 로고
    • Forecasting monthly river flow time series
    • IJFOEK, 0169-2070, 10.1016/0169-2070(85)90022-6
    • Nokes D.J. Mcleod I. Hipel K.W. Forecasting monthly river flow time series. Int. J. Forecasting 1985, 1:179-190. IJFOEK, 0169-2070, 10.1016/0169-2070(85)90022-6
    • (1985) Int. J. Forecasting , vol.1 , pp. 179-190
    • Nokes, D.J.1    Mcleod, I.2    Hipel, K.W.3
  • 22
    • 0001495905 scopus 로고
    • Learning with continuous classes
    • A. Adams, L. Sterling eds. World Scientific, Singapore.
    • Quinlan J.R. Learning with continuous classes. Proc., 5th Australian Joint Conf. on Artificial Intelligence 1992, 343-348. A. Adams, L. Sterling, and eds. World Scientific, Singapore.
    • (1992) Proc., 5th Australian Joint Conf. on Artificial Intelligence , pp. 343-348
    • Quinlan, J.R.1
  • 23
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2006)11:1(71)
    • Raghuwanshi N.S. Singh I. Reddy L.S. Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J. Hydrol. Eng. 2006, 11(1):71-79. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2006)11:1(71)
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, I.2    Reddy, L.S.3
  • 25
    • 16444365723 scopus 로고    scopus 로고
    • ANN based rainfall-runoff modeling: Comparison of network types
    • HYPRE3, 1099-1085, 10.1002/hyp.5581
    • Senthilkumar A.R. Sudheer K.P. Jain S.K. Agarwal P.K. ANN based rainfall-runoff modeling: Comparison of network types. Hydrol. Processes 2005, 19(6):1277-1291. HYPRE3, 1099-1085, 10.1002/hyp.5581
    • (2005) Hydrol. Processes , vol.19 , Issue.6 , pp. 1277-1291
    • Senthilkumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 26
    • 33846453985 scopus 로고    scopus 로고
    • Genetic programming model for forecast of short and noisy data
    • HYPRE3, 1099-1085, 10.1002/hyp.6226
    • Sivapragasam C. Vincent P. Vasudevan G. Genetic programming model for forecast of short and noisy data. Hydrol. Processes 2007, 21(2):266-272. HYPRE3, 1099-1085, 10.1002/hyp.6226
    • (2007) Hydrol. Processes , vol.21 , Issue.2 , pp. 266-272
    • Sivapragasam, C.1    Vincent, P.2    Vasudevan, G.3
  • 27
    • 0345290559 scopus 로고    scopus 로고
    • Applications of data-driven modeling and machine learning in control of water resources
    • M. Mohammadian, R. A. Sarkar, X. Yao, (a) eds., Idea Group Publishing, Hershey, PA.
    • Solomatine D.P. Applications of data-driven modeling and machine learning in control of water resources. Computational intelligence in control of water resources 2002, 197-217. M. Mohammadian, R. A. Sarkar, X. Yao, (a). and eds., Idea Group Publishing, Hershey, PA.
    • (2002) Computational intelligence in control of water resources , pp. 197-217
    • Solomatine, D.P.1
  • 28
    • 0038456166 scopus 로고    scopus 로고
    • Data-driven modeling: Paradigm, methods, experiences
    • (b) IWA Publishing, London.
    • Solomatine D.P. Data-driven modeling: Paradigm, methods, experiences. Proc., 5th Int. Conf. on Hydroinformatics 2002, (b). IWA Publishing, London.
    • (2002) Proc., 5th Int. Conf. on Hydroinformatics
    • Solomatine, D.P.1
  • 29
    • 33750096150 scopus 로고    scopus 로고
    • Local and hybrid learning models in forecasting natural phenomena
    • IEEE, Montreal, Canada.
    • Solomatine D.P. Local and hybrid learning models in forecasting natural phenomena. Proc., Int. IEEE Conf. on Neural Networks 2005, IEEE, Montreal, Canada.
    • (2005) Proc., Int. IEEE Conf. on Neural Networks
    • Solomatine, D.P.1
  • 30
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural networks in rainfall-runoff modeling
    • HSJODN, 0262-6667, 10.1623/hysj.48.3.399.45291
    • Solomatine D.P. Dulal K.N. Model tree as an alternative to neural networks in rainfall-runoff modeling. Hydrol. Sci. J. 2003, 48(3):399-411. HSJODN, 0262-6667, 10.1623/hysj.48.3.399.45291
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 32
    • 10244261532 scopus 로고    scopus 로고
    • M5 model tree and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2004)9:6(491)
    • Solomatine D.P. Xue Y. M5 model tree and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. J. Hydrol. Eng. 2004, 9(6):491-501. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2004)9:6(491)
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 33
    • 34249775216 scopus 로고    scopus 로고
    • Development of a low-flow forecasting model using the M5 machine learning method
    • HSJODN, 0262-6667, 10.1623/hysj.52.3.466
    • Štravs L. Brilly M. Development of low-flow forecasting model using the M5 machine learning method. Hydrol. Sci. J. 2007, 52(3):466-477. HSJODN, 0262-6667, 10.1623/hysj.52.3.466
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.3 , pp. 466-477
    • Štravs, L.1    Brilly, M.2
  • 34
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • HYPRE3, 1099-1085, 10.1002/hyp.5517
    • Sudheer K.P. Jain A. Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Processes 2004, 18:833-844. HYPRE3, 1099-1085, 10.1002/hyp.5517
    • (2004) Hydrol. Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 35
    • 43949090132 scopus 로고    scopus 로고
    • Forecasting spring reservoir inflows in Churchill Falls basin in Quebec, Canada
    • JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2008)13:6(426)
    • Sveinsson O.G. B. Forecasting spring reservoir inflows in Churchill Falls basin in Quebec, Canada. J. Hydrol. Eng. 2008, 13(6):426-437. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2008)13:6(426)
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.6 , pp. 426-437
    • Sveinsson, O.G.B.1
  • 36
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • 10.1016/j.jhydrol.2009.06.019, JHYDA7, 0022-1694
    • Wang W. C. Chau K. W. Cheng C. T. Qiu L. comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. (Amsterdam) 2009, 374(3-4):294-306. 10.1016/j.jhydrol.2009.06.019, JHYDA7, 0022-1694
    • (2009) J. Hydrol. (Amsterdam) , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 37
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • HYPRE3, 1099-1085, 10.1002/hyp.1013
    • Xu Z.X. Li J.Y. Short-term inflow forecasting using an artificial neural network model. Hydrol. Processes 2002, 16:2423-2439. HYPRE3, 1099-1085, 10.1002/hyp.1013
    • (2002) Hydrol. Processes , vol.16 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 38
    • 77953977940 scopus 로고    scopus 로고
    • Prediction of daily maximum streamflow based on stochastic approaches
    • 1530-4736
    • Yurekli K. Kurunc A. Simsek H. Prediction of daily maximum streamflow based on stochastic approaches. J. Spa. Hydrol. 2004, 4(2):1-12. 1530-4736
    • (2004) J. Spa. Hydrol. , vol.4 , Issue.2 , pp. 1-12
    • Yurekli, K.1    Kurunc, A.2    Simsek, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.