-
1
-
-
0034768520
-
Performance of stochastic approaches for forecasting river water quality
-
WARED4, 0097-8078, 10.1016/S0043-1354(01)00167-1
-
Ahmad S. Khan I.H. Parida B.P. Performance of stochastic approaches for forecasting river water quality. Water Resour. 2001, 35(18):4261-4266. WARED4, 0097-8078, 10.1016/S0043-1354(01)00167-1
-
(2001)
Water Resour.
, vol.35
, Issue.18
, pp. 4261-4266
-
-
Ahmad, S.1
Khan, I.H.2
Parida, B.P.3
-
2
-
-
28344455955
-
An artificial neural network model for generating hydrograph from hydro-meteorological parameters
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.03.032
-
Ahmad S. Simonovic S.P. An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J. Hydrol. (Amsterdam) 2005, 315:236-251. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.03.032
-
(2005)
J. Hydrol. (Amsterdam)
, vol.315
, pp. 236-251
-
-
Ahmad, S.1
Simonovic, S.P.2
-
3
-
-
34248202148
-
Artificial neural network model for synthetic streamflow generation
-
WRMAEJ, 0920-4741, 10.1007/s11269-006-9070-y
-
Ahmed J.A. Sarma A.K. Artificial neural network model for synthetic streamflow generation. Water Resour. Manage. 2007, 21(6):1015-1029. WRMAEJ, 0920-4741, 10.1007/s11269-006-9070-y
-
(2007)
Water Resour. Manage.
, vol.21
, Issue.6
, pp. 1015-1029
-
-
Ahmed, J.A.1
Sarma, A.K.2
-
4
-
-
0016355478
-
A new look at the statistical model identification
-
IETAA9, 0018-9286, 10.1109/TAC.1974.1100705
-
Akaike H. new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19(6):716-723. IETAA9, 0018-9286, 10.1109/TAC.1974.1100705
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
6
-
-
12144254367
-
Application of artificial neural networks and M5 model tree to modeling stage-discharge relationship
-
B. S. Beijing, Z. Y. Wu, G. Q. Wang, G. H. Wang, Huang, J. C. Huang, and eds., Science Press, New York.
-
Bhattacharya B. Solomatine D.P. Application of artificial neural networks and M5 model tree to modeling stage-discharge relationship. Proc., 2nd Int. Symp. on Flood Defence 2002, B. S. Beijing, Z. Y. Wu, G. Q. Wang, G. H. Wang, Huang, J. C. Huang, and eds., Science Press, New York.
-
(2002)
Proc., 2nd Int. Symp. on Flood Defence
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
7
-
-
12144264770
-
Neural networks and M5 model tree in modeling water level-discharge relationship
-
NRCGEO, 0925-2312, 10.1016/j.neucom.2004.04.016
-
Bhattacharya B. Solomatine D.P. Neural networks and M5 model tree in modeling water level-discharge relationship. Neurocomputing; Var. Star Bull. 2005, 63:381-396. NRCGEO, 0925-2312, 10.1016/j.neucom.2004.04.016
-
(2005)
Neurocomputing; Var. Star Bull.
, vol.63
, pp. 381-396
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
8
-
-
40649106229
-
Improving empirical models with machine learning
-
IEEE, Vancouver, BC, Canada.
-
Bhattacharya B. Solomatine D.P. Improving empirical models with machine learning. Proc., 6th Int. Conf. on Neural Networks 2006, IEEE, Vancouver, BC, Canada.
-
(2006)
Proc., 6th Int. Conf. on Neural Networks
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
10
-
-
0032688155
-
River flood forecasting with a neural network model
-
WRERAQ, 0043-1397, 10.1029/1998WR900086
-
Campolo M. Andreussi P. Soldati A. River flood forecasting with neural network model. Water Resour. Res. 1999, 35(4):1191-1197. WRERAQ, 0043-1397, 10.1029/1998WR900086
-
(1999)
Water Resour. Res.
, vol.35
, Issue.4
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
11
-
-
65949109499
-
Integrating hydrometeorological information for rainfall-runoff modeling by artificial neural networks
-
10.1002/hyp.7299, HYPRE3, 1099-1085
-
Chiang Y.M. Chang F.J. Integrating hydrometeorological information for rainfall-runoff modeling by artificial neural networks. Hydrol. Processes 2009, 23(11):1650-1659. 10.1002/hyp.7299, HYPRE3, 1099-1085
-
(2009)
Hydrol. Processes
, vol.23
, Issue.11
, pp. 1650-1659
-
-
Chiang, Y.M.1
Chang, F.J.2
-
12
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00214-6
-
Coulibaly P. Anctil F. Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. (Amsterdam) 2000, 230:244-257. JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00214-6
-
(2000)
J. Hydrol. (Amsterdam)
, vol.230
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
13
-
-
14844292558
-
Improving daily reservoir inflow forecasts with model combination
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:2(91)
-
Coulibaly P. Hache M. Fortin V. Bobee B. Improving daily reservoir inflow forecasts with model combination. J. Hydrol. Eng. 2005, 10(2):91-99. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2005)10:2(91)
-
(2005)
J. Hydrol. Eng.
, vol.10
, Issue.2
, pp. 91-99
-
-
Coulibaly, P.1
Hache, M.2
Fortin, V.3
Bobee, B.4
-
14
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
WRERAQ, 0043-1397, 10.1029/95WR01955
-
Hsu K.L. Gupta H.V. Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530. WRERAQ, 0043-1397, 10.1029/95WR01955
-
(1995)
Water Resour. Res.
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.L.1
Gupta, H.V.2
Sorooshian, S.3
-
15
-
-
0017846358
-
On a measure of lack of fit in time series models
-
BIJODN, 1521-4036
-
Ljung G.M. Box G.E. P. On measure of lack of fit in time series models. Biom. J. 1978, 65(2):297-303. BIJODN, 1521-4036
-
(1978)
Biom. J.
, vol.65
, Issue.2
, pp. 297-303
-
-
Ljung, G.M.1
Box, G.E.P.2
-
17
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
HSJODN, 0262-6667, 10.1080/02626669609491511
-
Minns A. Hall M. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41(3):399-417. HSJODN, 0262-6667, 10.1080/02626669609491511
-
(1996)
Hydrol. Sci. J.
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.1
Hall, M.2
-
18
-
-
34249787892
-
Seasonal reservoir inflow forecasting with low-frequency climatic indices: A comparison of data-driven methods
-
HSJODN, 0262-6667, 10.1623/hysj.52.3.508
-
Muluye G.Y. Coulibaly P. Seasonal reservoir inflow forecasting with low-frequency climatic indices: comparison of data-driven methods. Hydrol. Sci. J. 2007, 52(3):508-522. HSJODN, 0262-6667, 10.1623/hysj.52.3.508
-
(2007)
Hydrol. Sci. J.
, vol.52
, Issue.3
, pp. 508-522
-
-
Muluye, G.Y.1
Coulibaly, P.2
-
19
-
-
0014776873
-
River flow forecasting through conceptual models Part 1-A discussion of principles
-
JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6
-
Nash J.E. Sutcliffe J.V. River flow forecasting through conceptual models Part 1-A discussion of principles. J. Hydrol. (Amsterdam) 1970, 10(3):282-290. JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6
-
(1970)
J. Hydrol. (Amsterdam)
, vol.10
, Issue.3
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
20
-
-
0004264236
-
Forecasting monthly river flow time series
-
IJFOEK, 0169-2070, 10.1016/0169-2070(85)90022-6
-
Nokes D.J. Mcleod I. Hipel K.W. Forecasting monthly river flow time series. Int. J. Forecasting 1985, 1:179-190. IJFOEK, 0169-2070, 10.1016/0169-2070(85)90022-6
-
(1985)
Int. J. Forecasting
, vol.1
, pp. 179-190
-
-
Nokes, D.J.1
Mcleod, I.2
Hipel, K.W.3
-
22
-
-
0001495905
-
Learning with continuous classes
-
A. Adams, L. Sterling eds. World Scientific, Singapore.
-
Quinlan J.R. Learning with continuous classes. Proc., 5th Australian Joint Conf. on Artificial Intelligence 1992, 343-348. A. Adams, L. Sterling, and eds. World Scientific, Singapore.
-
(1992)
Proc., 5th Australian Joint Conf. on Artificial Intelligence
, pp. 343-348
-
-
Quinlan, J.R.1
-
23
-
-
31444443313
-
Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2006)11:1(71)
-
Raghuwanshi N.S. Singh I. Reddy L.S. Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J. Hydrol. Eng. 2006, 11(1):71-79. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2006)11:1(71)
-
(2006)
J. Hydrol. Eng.
, vol.11
, Issue.1
, pp. 71-79
-
-
Raghuwanshi, N.S.1
Singh, I.2
Reddy, L.S.3
-
25
-
-
16444365723
-
ANN based rainfall-runoff modeling: Comparison of network types
-
HYPRE3, 1099-1085, 10.1002/hyp.5581
-
Senthilkumar A.R. Sudheer K.P. Jain S.K. Agarwal P.K. ANN based rainfall-runoff modeling: Comparison of network types. Hydrol. Processes 2005, 19(6):1277-1291. HYPRE3, 1099-1085, 10.1002/hyp.5581
-
(2005)
Hydrol. Processes
, vol.19
, Issue.6
, pp. 1277-1291
-
-
Senthilkumar, A.R.1
Sudheer, K.P.2
Jain, S.K.3
Agarwal, P.K.4
-
26
-
-
33846453985
-
Genetic programming model for forecast of short and noisy data
-
HYPRE3, 1099-1085, 10.1002/hyp.6226
-
Sivapragasam C. Vincent P. Vasudevan G. Genetic programming model for forecast of short and noisy data. Hydrol. Processes 2007, 21(2):266-272. HYPRE3, 1099-1085, 10.1002/hyp.6226
-
(2007)
Hydrol. Processes
, vol.21
, Issue.2
, pp. 266-272
-
-
Sivapragasam, C.1
Vincent, P.2
Vasudevan, G.3
-
27
-
-
0345290559
-
Applications of data-driven modeling and machine learning in control of water resources
-
M. Mohammadian, R. A. Sarkar, X. Yao, (a) eds., Idea Group Publishing, Hershey, PA.
-
Solomatine D.P. Applications of data-driven modeling and machine learning in control of water resources. Computational intelligence in control of water resources 2002, 197-217. M. Mohammadian, R. A. Sarkar, X. Yao, (a). and eds., Idea Group Publishing, Hershey, PA.
-
(2002)
Computational intelligence in control of water resources
, pp. 197-217
-
-
Solomatine, D.P.1
-
28
-
-
0038456166
-
Data-driven modeling: Paradigm, methods, experiences
-
(b) IWA Publishing, London.
-
Solomatine D.P. Data-driven modeling: Paradigm, methods, experiences. Proc., 5th Int. Conf. on Hydroinformatics 2002, (b). IWA Publishing, London.
-
(2002)
Proc., 5th Int. Conf. on Hydroinformatics
-
-
Solomatine, D.P.1
-
29
-
-
33750096150
-
Local and hybrid learning models in forecasting natural phenomena
-
IEEE, Montreal, Canada.
-
Solomatine D.P. Local and hybrid learning models in forecasting natural phenomena. Proc., Int. IEEE Conf. on Neural Networks 2005, IEEE, Montreal, Canada.
-
(2005)
Proc., Int. IEEE Conf. on Neural Networks
-
-
Solomatine, D.P.1
-
30
-
-
0037565156
-
Model tree as an alternative to neural networks in rainfall-runoff modeling
-
HSJODN, 0262-6667, 10.1623/hysj.48.3.399.45291
-
Solomatine D.P. Dulal K.N. Model tree as an alternative to neural networks in rainfall-runoff modeling. Hydrol. Sci. J. 2003, 48(3):399-411. HSJODN, 0262-6667, 10.1623/hysj.48.3.399.45291
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Dulal, K.N.2
-
32
-
-
10244261532
-
M5 model tree and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2004)9:6(491)
-
Solomatine D.P. Xue Y. M5 model tree and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. J. Hydrol. Eng. 2004, 9(6):491-501. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2004)9:6(491)
-
(2004)
J. Hydrol. Eng.
, vol.9
, Issue.6
, pp. 491-501
-
-
Solomatine, D.P.1
Xue, Y.2
-
33
-
-
34249775216
-
Development of a low-flow forecasting model using the M5 machine learning method
-
HSJODN, 0262-6667, 10.1623/hysj.52.3.466
-
Štravs L. Brilly M. Development of low-flow forecasting model using the M5 machine learning method. Hydrol. Sci. J. 2007, 52(3):466-477. HSJODN, 0262-6667, 10.1623/hysj.52.3.466
-
(2007)
Hydrol. Sci. J.
, vol.52
, Issue.3
, pp. 466-477
-
-
Štravs, L.1
Brilly, M.2
-
34
-
-
1642333234
-
Explaining the internal behaviour of artificial neural network river flow models
-
HYPRE3, 1099-1085, 10.1002/hyp.5517
-
Sudheer K.P. Jain A. Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Processes 2004, 18:833-844. HYPRE3, 1099-1085, 10.1002/hyp.5517
-
(2004)
Hydrol. Processes
, vol.18
, pp. 833-844
-
-
Sudheer, K.P.1
Jain, A.2
-
35
-
-
43949090132
-
Forecasting spring reservoir inflows in Churchill Falls basin in Quebec, Canada
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2008)13:6(426)
-
Sveinsson O.G. B. Forecasting spring reservoir inflows in Churchill Falls basin in Quebec, Canada. J. Hydrol. Eng. 2008, 13(6):426-437. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2008)13:6(426)
-
(2008)
J. Hydrol. Eng.
, vol.13
, Issue.6
, pp. 426-437
-
-
Sveinsson, O.G.B.1
-
36
-
-
68349105875
-
A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
-
10.1016/j.jhydrol.2009.06.019, JHYDA7, 0022-1694
-
Wang W. C. Chau K. W. Cheng C. T. Qiu L. comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. (Amsterdam) 2009, 374(3-4):294-306. 10.1016/j.jhydrol.2009.06.019, JHYDA7, 0022-1694
-
(2009)
J. Hydrol. (Amsterdam)
, vol.374
, Issue.3-4
, pp. 294-306
-
-
Wang, W.C.1
Chau, K.W.2
Cheng, C.T.3
Qiu, L.4
-
37
-
-
0037200134
-
Short-term inflow forecasting using an artificial neural network model
-
HYPRE3, 1099-1085, 10.1002/hyp.1013
-
Xu Z.X. Li J.Y. Short-term inflow forecasting using an artificial neural network model. Hydrol. Processes 2002, 16:2423-2439. HYPRE3, 1099-1085, 10.1002/hyp.1013
-
(2002)
Hydrol. Processes
, vol.16
, pp. 2423-2439
-
-
Xu, Z.X.1
Li, J.Y.2
-
38
-
-
77953977940
-
Prediction of daily maximum streamflow based on stochastic approaches
-
1530-4736
-
Yurekli K. Kurunc A. Simsek H. Prediction of daily maximum streamflow based on stochastic approaches. J. Spa. Hydrol. 2004, 4(2):1-12. 1530-4736
-
(2004)
J. Spa. Hydrol.
, vol.4
, Issue.2
, pp. 1-12
-
-
Yurekli, K.1
Kurunc, A.2
Simsek, H.3
|