메뉴 건너뛰기




Volumn 28, Issue 3, 2013, Pages 614-630

Improvement of typhoon precipitation forecast efficiency by coupling SSM/I microwave data with climatologic characteristics and precipitation

Author keywords

[No Author keywords available]

Indexed keywords

CENTRAL WEATHER BUREAUX; EQUITABLE THREAT SCORE; LOGISTIC REGRESSION MODELS; MEAN ABSOLUTE ERROR; PRECIPITATION FORECAST; QUANTITATIVE PRECIPITATION FORECAST; RAINFALL PREDICTION; SPECIAL SENSOR MICROWAVE IMAGERS;

EID: 84879996112     PISSN: 08828156     EISSN: 15200434     Source Type: Journal    
DOI: 10.1175/WAF-D-12-00089.1     Document Type: Article
Times cited : (8)

References (68)
  • 1
    • 0344467284 scopus 로고    scopus 로고
    • Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids
    • Accadia, C., S. Mariani, M. Casaioli,A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918-932.
    • (2003) Wea. Forecasting , vol.18 , pp. 918-932
    • Accadia, C.1    Mariani, S.2    Casaioli, M.3    Lavagnini, A.4    Speranza, A.5
  • 2
    • 0031221603 scopus 로고    scopus 로고
    • Decision support for real-time telemarketing operations through Bayesian network learning
    • Ahn, J. H., and K. J. Ezawa, 1997: Decision support for real-time telemarketing operations through Bayesian network learning. Decis. Support Syst., 21, 17-27.
    • (1997) Decis. Support Syst. , vol.21 , pp. 17-27
    • Ahn, J.H.1    Ezawa, K.J.2
  • 3
    • 0000996931 scopus 로고
    • Estimating climatic-scale precipitation from space: A review
    • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 1229-1238.
    • (1989) J. Climate , vol.2 , pp. 1229-1238
    • Arkin, P.A.1    Ardanuy, P.E.2
  • 4
    • 20444506072 scopus 로고    scopus 로고
    • Application of Sea- Winds scatterometer and TMI-SSM/I rain rates to hurricane analysis and forecasting
    • Atlas, R., A. Y. Hou, and O. Reale, 2005: Application of Sea- Winds scatterometer and TMI-SSM/I rain rates to hurricane analysis and forecasting. J. Photogramm. Remote Sens., 59, 233-243.
    • (2005) J. Photogramm. Remote Sens. , vol.59 , pp. 233-243
    • Atlas, R.1    Hou, A.Y.2    Reale, O.3
  • 5
    • 78649772499 scopus 로고    scopus 로고
    • A Gaussian mixed model for learning discrete Bayesian networks
    • Balov, N., 2011: A Gaussian mixed model for learning discrete Bayesian networks. Stat. Probab. Lett., 81, 220-230.
    • (2011) Stat. Probab. Lett. , vol.81 , pp. 220-230
    • Balov, N.1
  • 6
    • 41249100840 scopus 로고    scopus 로고
    • A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
    • Biancamaria, S., N. M. Mognard, A. Boone, M. Grippa, and E. G. Josberger, 2008: A satellite snow depth multi-year average derived from SSM/I for the high latitude regions. Remote Sens. Environ., 112, 2557-2568.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2557-2568
    • Biancamaria, S.1    Mognard, N.M.2    Boone, A.3    Grippa, M.4    Josberger, E.G.5
  • 8
    • 0027829097 scopus 로고
    • Effects of terrain on the surface structure of typhoons over Taiwan
    • Chang, C. P., T. C. Yeh, and J. M. Chen, 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734-752.
    • (1993) Mon. Wea. Rev. , vol.121 , pp. 734-752
    • Chang, C.P.1    Yeh, T.C.2    Chen, J.M.3
  • 9
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau, K. W., C. L. Wu, and Y. S. Li, 2005: Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng., 10, 485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 10
    • 44649106898 scopus 로고    scopus 로고
    • Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos
    • Cheng, C. T., W. C. Wang, D. M. Xu, and K. W. Chau, 2008: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manage., 22, 895-909.
    • (2008) Water Resour. Manage. , vol.22 , pp. 895-909
    • Cheng, C.T.1    Wang, W.C.2    Xu, D.M.3    Chau, K.W.4
  • 11
    • 0025206052 scopus 로고
    • Rain estimation from satellites: Effect of finite field of view
    • Chiu, L. S., G. R. North, D. A. Short, and A. McConnell, 1990: Rain estimation from satellites: Effect of finite field of view. J. Geophys. Res., 95 (D3), 2177-2185.
    • (1990) J. Geophys. Res. , vol.95 , Issue.D3 , pp. 2177-2185
    • Chiu, L.S.1    North, G.R.2    Short, D.A.3    McConnell, A.4
  • 13
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., and E. Herskovits, 1992: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn., 9, 309-347.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 15
    • 0033776904 scopus 로고    scopus 로고
    • Radar calibration of physical profile-based precipitation retrieval from passive microwave sensors
    • Dietrich, S., R. Bechini, C. Adamo, A. Mugnai, and F. Prodi, 2000: Radar calibration of physical profile-based precipitation retrieval from passive microwave sensors. Phys. Chem. Earth, 25B, 877-882.
    • (2000) Phys. Chem. Earth , vol.25 B , pp. 877-882
    • Dietrich, S.1    Bechini, R.2    Adamo, C.3    Mugnai, A.4    Prodi, F.5
  • 17
    • 0038707202 scopus 로고    scopus 로고
    • The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models
    • Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models. Bull. Amer. Meteor. Soc., 84, 481-492.
    • (2003) Bull. Amer. Meteor. Soc. , vol.84 , pp. 481-492
    • Ebert, E.E.1    Damrath, U.2    Wergen, W.3    Baldwin, M.E.4
  • 18
    • 0028684860 scopus 로고
    • Effects of surface conditions on rain identification using the SSM/I
    • Ferraro, R. R., N. C. Grody, and G. F. Marks, 1994: Effects of surface conditions on rain identification using the SSM/I. Remote Sens. Rev., 11, 195-209.
    • (1994) Remote Sens. Rev. , vol.11 , pp. 195-209
    • Ferraro, R.R.1    Grody, N.C.2    Marks, G.F.3
  • 19
    • 0030425367 scopus 로고    scopus 로고
    • An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements
    • Ferraro, R. R., F. Weng, N. C. Grody, and A. Basist, 1996: An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891-905.
    • (1996) Bull. Amer. Meteor. Soc. , vol.77 , pp. 891-905
    • Ferraro, R.R.1    Weng, F.2    Grody, N.C.3    Basist, A.4
  • 21
    • 63649108606 scopus 로고    scopus 로고
    • Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions
    • Gan, T. Y., O. Kalinga, and P. Singh, 2009: Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions. Remote Sens. Environ., 113, 919-927.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 919-927
    • Gan, T.Y.1    Kalinga, O.2    Singh, P.3
  • 22
    • 0034348346 scopus 로고    scopus 로고
    • Assessment of the use of lightning information in satellite infrared rainfall estimated
    • Grecu, M., E. N. Anagnostou, and R. F. Adler, 2000: Assessment of the use of lightning information in satellite infrared rainfall estimated. J. Hydrometeor., 1, 211-221.
    • (2000) J. Hydrometeor. , vol.1 , pp. 211-221
    • Grecu, M.1    Anagnostou, E.N.2    Adler, R.F.3
  • 23
    • 0026298553 scopus 로고
    • Classification of snow cover and precipitation using the Special Sensor Microwave Imager
    • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96 (D4), 7423-7435.
    • (1991) J. Geophys. Res. , vol.96 , Issue.D4 , pp. 7423-7435
    • Grody, N.C.1
  • 24
    • 38549104230 scopus 로고    scopus 로고
    • A real-time flood updating model based on the Bayesian method
    • Guo, S., G. Xu, H. Zhang, and C. Li, 2007: A real-time flood updating model based on the Bayesian method. Methodol. Hydrol., 311, 210-215.
    • (2007) Methodol. Hydrol. , vol.311 , pp. 210-215
    • Guo, S.1    Xu, G.2    Zhang, H.3    Li, C.4
  • 25
    • 0033117844 scopus 로고    scopus 로고
    • Hypothesis tests for evaluating numerical precipitation forecasts
    • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155-167.
    • (1999) Wea. Forecasting , vol.14 , pp. 155-167
    • Hamill, T.M.1
  • 27
    • 33947170387 scopus 로고    scopus 로고
    • Amultipurpose reservoir real-time operation model for flood control during typhoon invasion
    • Hsu, N. S., and C.-C. Wei, 2007:Amultipurpose reservoir real-time operation model for flood control during typhoon invasion. J. Hydrol., 336, 282-293.
    • (2007) J. Hydrol. , vol.336 , pp. 282-293
    • Hsu, N.S.1    Wei, C.-C.2
  • 28
    • 84155186550 scopus 로고    scopus 로고
    • Improving tree augmented naïve Bayes for class probability estimation
    • Jiang, L., Z. Cai, D. Wang, and H. Zhang, 2012: Improving tree augmented naïve Bayes for class probability estimation. Knowl.-Based Syst., 26, 239-245.
    • (2012) Knowl.-Based Syst. , vol.26 , pp. 239-245
    • Jiang, L.1    Cai, Z.2    Wang, D.3    Zhang, H.4
  • 29
    • 0034075528 scopus 로고    scopus 로고
    • Satellite derived energy and water cycle components in North Atlantic cyclones
    • Klepp, C., and S. Bakan, 2000: Satellite derived energy and water cycle components in North Atlantic cyclones. Phys. Chem. Earth, 25, 65-68.
    • (2000) Phys. Chem. Earth , vol.25 , pp. 65-68
    • Klepp, C.1    Bakan, S.2
  • 30
    • 34248647301 scopus 로고    scopus 로고
    • Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
    • Kurt, I., M. Ture, and A. T. Kurum, 2008: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl., 34, 366-374.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 366-374
    • Kurt, I.1    Ture, M.2    Kurum, A.T.3
  • 31
    • 0026992322 scopus 로고
    • Proc. 10th National Conf. on Artificial Intelligence, San Jose, CA, Association for the Advancement of Artificial Intelligence
    • Langley, P., W. Iba, and K. Thompson, 1992: An analysis of Bayesian classifiers. Proc. 10th National Conf. on Artificial Intelligence, San Jose, CA, Association for the Advancement of Artificial Intelligence, 223-228.
    • (1992) An analysis of Bayesian classifiers , pp. 223-228
    • Langley, P.1    Iba, W.2    Thompson, K.3
  • 32
    • 33644787130 scopus 로고    scopus 로고
    • A climatology model for forecasting typhoon rainfall in Taiwan
    • Lee, C. S., L. R. Huang, H. S. Shen, and S. T. Wang, 2006: A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards, 37, 87-105.
    • (2006) Nat. Hazards , vol.37 , pp. 87-105
    • Lee, C.S.1    Huang, L.R.2    Shen, H.S.3    Wang, S.T.4
  • 33
    • 84865545289 scopus 로고    scopus 로고
    • Assessment of debris flow hazards using a Bayesian network
    • Liang, W., D. Zhuang, D. Jiang, J. Pan, and H. Ren, 2012: Assessment of debris flow hazards using a Bayesian network. Geomorphology, 171-172, 94-100.
    • (2012) Geomorphology , vol.171-172 , pp. 94-100
    • Liang, W.1    Zhuang, D.2    Jiang, D.3    Pan, J.4    Ren, H.5
  • 34
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J. Y., C. T. Cheng, and K. W. Chau, 2006: Using support vector machines for long-term discharge prediction. Hydrol. Sci. J., 51, 599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 35
    • 0030831027 scopus 로고    scopus 로고
    • Precipitation characteristics in Greenland-Iceland-Norwegian Seas determined by using satellite microwave data
    • Liu, G., and J. A. Curry, 1997: Precipitation characteristics in Greenland-Iceland-Norwegian Seas determined by using satellite microwave data. J. Geophys. Res., 102 (D12), 13 987- 13 997.
    • (1997) J. Geophys. Res. , vol.102 , Issue.D12
    • Liu, G.1    Curry, J.A.2
  • 36
    • 34848926054 scopus 로고    scopus 로고
    • A parametric model for predicting hurricane rainfall
    • Lonfat, M., R. Rogers, T. Marchok, and F. D. Marks Jr., 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 3086-3097.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 3086-3097
    • Lonfat, M.1    Rogers, R.2    Marchok, T.3    Marks Jr., F.D.4
  • 37
    • 0035414947 scopus 로고    scopus 로고
    • Ensemble forecast of a typhoon flood event
    • Mackey, B. P., and T. N. Krishnamurti, 2001: Ensemble forecast of a typhoon flood event. Wea. Forecasting, 16, 399-415.
    • (2001) Wea. Forecasting , vol.16 , pp. 399-415
    • Mackey, B.P.1    Krishnamurti, T.N.2
  • 38
    • 69949110656 scopus 로고    scopus 로고
    • On the classification performance of TAN and general Bayesian networks
    • Madden, M. G., 2009: On the classification performance of TAN and general Bayesian networks. Knowl.-Based Syst., 22, 489- 495.
    • (2009) Knowl.-Based Syst. , vol.22
    • Madden, M.G.1
  • 39
    • 68349131759 scopus 로고    scopus 로고
    • Rainfall retrieval over Indian land and oceanic regions from SSM/I microwave data
    • Mishra,A., R. M. Gairola, A. K.Varma, A. Sarkar, and V. K.Agarwal, 2009:Rainfall retrieval over Indian land and oceanic regions from SSM/I microwave data. Adv. Space Res., 44, 815-823.
    • (2009) Adv. Space Res. , vol.44 , pp. 815-823
    • Mishra, A.1    Gairola, R.M.2    Varma, A.K.3    Sarkar, A.4    Agarwal, V.K.5
  • 41
    • 0027706813 scopus 로고
    • What is a good forecast? An essay on the nature of goodness in weather forecasting
    • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281-293.
    • (1993) Wea. Forecasting , vol.8 , pp. 281-293
    • Murphy, A.H.1
  • 42
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • Muttil, N., and K. W. Chau, 2006: Neural network and genetic programming for modelling coastal algal blooms. Int. J. Environ. Pollut., 28, 223-238.
    • (2006) Int. J. Environ. Pollut. , vol.28 , pp. 223-238
    • Muttil, N.1    Chau, K.W.2
  • 43
    • 0031395909 scopus 로고    scopus 로고
    • Monitoring of rainfall integrating active and passive microwave sensors: Possibilities and problems
    • Nativi, S., E. C. Barrett, and M. J. Beaumont, 1997: Monitoring of rainfall integrating active and passive microwave sensors: Possibilities and problems. Phys. Chem. Earth, 22, 229-233.
    • (1997) Phys. Chem. Earth , vol.22 , pp. 229-233
    • Nativi, S.1    Barrett, E.C.2    Beaumont, M.J.3
  • 44
    • 33748376450 scopus 로고    scopus 로고
    • Storm morphology and rainfall characteristics of TRMM precipitation features
    • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 2702-2721.
    • (2006) Mon. Wea. Rev. , vol.134 , pp. 2702-2721
    • Nesbitt, S.W.1    Cifelli, R.2    Rutledge, S.A.3
  • 45
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • Niculescu, S. P., 2003: Artificial neural networks and genetic algorithms in QSAR. J. Mol. Struct. THEOCHEM, 622, 71-83.
    • (2003) J. Mol. Struct. THEOCHEM , vol.622 , pp. 71-83
    • Niculescu, S.P.1
  • 47
    • 4644329616 scopus 로고    scopus 로고
    • Bayesian network classifiers versus selective k-NN classifier
    • Pernkopf, F., 2005: Bayesian network classifiers versus selective k-NN classifier. Pattern Recognit., 38, 1-10.
    • (2005) Pattern Recognit. , vol.38 , pp. 1-10
    • Pernkopf, F.1
  • 48
    • 0042830813 scopus 로고    scopus 로고
    • Floating search algorithm for structure learning of Bayesian network classifiers
    • Pernkopf, F., and P. O'Leary, 2003: Floating search algorithm for structure learning of Bayesian network classifiers. Pattern Recognit. Lett., 24, 2839-2848.
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 2839-2848
    • Pernkopf, F.1    O'Leary, P.2
  • 49
    • 0030209414 scopus 로고    scopus 로고
    • Satellite estimation of precipitation over land
    • Petty, G. W., and W. F. Krajewski, 1996: Satellite estimation of precipitation over land. Hydrol. Sci. J., 41, 433-451.
    • (1996) Hydrol. Sci. J. , vol.41 , pp. 433-451
    • Petty, G.W.1    Krajewski, W.F.2
  • 51
    • 0002437048 scopus 로고
    • Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal
    • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254-273.
    • (1989) J. Atmos. Oceanic Technol. , vol.6 , pp. 254-273
    • Spencer, R.W.1    Goodman, H.M.2    Hood, R.E.3
  • 52
    • 70350728384 scopus 로고    scopus 로고
    • Impact of censoring on learning Bayesian networks in survival modelling
    • Stajduhar, I., B. Dalbelo-Basic, and N. Bogunovic, 2009: Impact of censoring on learning Bayesian networks in survival modelling. Artif. Intell. Med., 47, 199-217.
    • (2009) Artif. Intell. Med. , vol.47 , pp. 199-217
    • Stajduhar, I.1    Dalbelo-Basic, B.2    Bogunovic, N.3
  • 53
    • 0033924470 scopus 로고    scopus 로고
    • Use of the "odds ratio" for diagnosing forecast skill
    • Stephenson, D. B., 2000: Use of the "odds ratio" for diagnosing forecast skill. Wea. Forecasting, 15, 221-232.
    • (2000) Wea. Forecasting , vol.15 , pp. 221-232
    • Stephenson, D.B.1
  • 54
    • 84856372643 scopus 로고    scopus 로고
    • Decision tree-based classifier combined with neural-based predictor for waterstage forecasts in a river basin during typhoons:Acase study in Taiwan
    • Tsai, C. C., M. C. Lu, and C. C. Wei, 2012: Decision tree-based classifier combined with neural-based predictor for waterstage forecasts in a river basin during typhoons:Acase study in Taiwan. Environ. Eng. Sci., 29, 108-116.
    • (2012) Environ. Eng. Sci. , vol.29 , pp. 108-116
    • Tsai, C.C.1    Lu, M.C.2    Wei, C.C.3
  • 55
    • 33947234637 scopus 로고    scopus 로고
    • Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms
    • Tuleya, R. E., M. DeMaria, and R. J. Kuligowski, 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 56-70.
    • (2007) Wea. Forecasting , vol.22 , pp. 56-70
    • Tuleya, R.E.1    DeMaria, M.2    Kuligowski, R.J.3
  • 56
    • 34047185270 scopus 로고    scopus 로고
    • Advantages and challenges of Bayesian networks in environmental modeling
    • Uusitalo, L., 2007:Advantages and challenges of Bayesian networks in environmental modeling. Ecol. Modell., 203, 312-318.
    • (2007) Ecol. Modell. , vol.203 , pp. 312-318
    • Uusitalo, L.1
  • 57
    • 77955511680 scopus 로고    scopus 로고
    • Fault detection and isolation of faults in a multivariate process with Bayesian network
    • Verron, S., J. Li, and T. Tiplica, 2010: Fault detection and isolation of faults in a multivariate process with Bayesian network. J. Process Control, 20, 902-911.
    • (2010) J. Process Control , vol.20 , pp. 902-911
    • Verron, S.1    Li, J.2    Tiplica, T.3
  • 58
    • 84865035695 scopus 로고    scopus 로고
    • Calibration of Xinanjiang model parameters using hybrid genetic algorithm based fuzzy optimal model
    • Wang, W. C., C. T. Cheng, K. W. Chau, and D. M. Xu, 2012: Calibration of Xinanjiang model parameters using hybrid genetic algorithm based fuzzy optimal model. J. Hydroinf., 14, 784- 799.
    • (2012) J. Hydroinf. , vol.14
    • Wang, W.C.1    Cheng, C.T.2    Chau, K.W.3    Xu, D.M.4
  • 59
    • 84864760787 scopus 로고    scopus 로고
    • RBF neural networks combined with principal component analysis applied to quantitative precipitation forecast for a reservoir watershed during typhoon periods
    • Wei, C.-C., 2012a: RBF neural networks combined with principal component analysis applied to quantitative precipitation forecast for a reservoir watershed during typhoon periods. J. Hydrometeor., 13, 722-734.
    • (2012) J. Hydrometeor. , vol.13 , pp. 722-734
    • Wei, C.-C.1
  • 60
    • 84863003352 scopus 로고    scopus 로고
    • Wavelet support vector machines for forecasting precipitation in tropical cyclones: Comparisons with GSVM, regressions, and numerical MM5 model
    • Wei, C.-C., 2012b: Wavelet support vector machines for forecasting precipitation in tropical cyclones: Comparisons with GSVM, regressions, and numerical MM5 model. Wea. Forecasting, 27, 438-450.
    • (2012) Wea. Forecasting , vol.27 , pp. 438-450
    • Wei, C.-C.1
  • 61
    • 41149153775 scopus 로고    scopus 로고
    • Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees
    • doi:10.1029/2006WR005792
    • Wei, C.-C., and N. S. Hsu, 2008: Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees. Water Resour. Res., 44, W02428, doi:10.1029/2006WR005792.
    • (2008) Water Resour. Res. , vol.44
    • Wei, C.-C.1    Hsu, N.S.2
  • 62
    • 58849099177 scopus 로고    scopus 로고
    • Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system
    • Wei, C.-C., and N. S. Hsu, 2009: Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system. J. Hydrol., 365, 213-224.
    • (2009) J. Hydrol. , vol.365 , pp. 213-224
    • Wei, C.-C.1    Hsu, N.S.2
  • 63
    • 84869486522 scopus 로고    scopus 로고
    • Retrievals for the rainfall rate over land using Special Sensor Microwave/Imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression
    • Wei, C.-C., and J. Roan, 2012: Retrievals for the rainfall rate over land using Special Sensor Microwave/Imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression. J. Hydrometeor., 13, 1567-1578.
    • (2012) J. Hydrometeor. , vol.13 , pp. 1567-1578
    • Wei, C.-C.1    Roan, J.2
  • 64
    • 4544296304 scopus 로고    scopus 로고
    • Data mining of Bayesian networks using cooperative coevolution
    • Wong, M. L., S. Y. Lee, and K. S. Leung, 2004: Data mining of Bayesian networks using cooperative coevolution. Decis. Support Syst., 38, 451-472.
    • (2004) Decis. Support Syst. , vol.38 , pp. 451-472
    • Wong, M.L.1    Lee, S.Y.2    Leung, K.S.3
  • 65
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
    • doi:10.1029/2007WR006737
    • Wu, C. L., K. W. Chau, and Y. S. Li, 2009: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques. Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 66
    • 67650498428 scopus 로고    scopus 로고
    • Structure identification of Bayesian classifiers based on GMDH
    • Xiao, J., C. He, and X. Jiang, 2009: Structure identification of Bayesian classifiers based on GMDH. Knowl.-Based Syst., 22, 461-470.
    • (2009) Knowl.-Based Syst. , vol.22 , pp. 461-470
    • Xiao, J.1    He, C.2    Jiang, X.3
  • 67
    • 0036995846 scopus 로고    scopus 로고
    • Typhoon rainfall over Taiwan area: The empirical orthogonal function modes and their applications on the rainfall forecasting
    • Yeh, T. C., 2002: Typhoon rainfall over Taiwan area: The empirical orthogonal function modes and their applications on the rainfall forecasting. Terr. Atmos. Oceanic Sci., 13, 449-468.
    • (2002) Terr. Atmos. Oceanic Sci. , vol.13 , pp. 449-468
    • Yeh, T.C.1
  • 68
    • 0037296016 scopus 로고    scopus 로고
    • Using Bayesian network on network tomography
    • Zhu, W., 2003: Using Bayesian network on network tomography. Comput. Commun., 26, 155-163.
    • (2003) Comput. Commun. , vol.26 , pp. 155-163
    • Zhu, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.