메뉴 건너뛰기




Volumn 63, Issue 1, 2007, Pages 91-107

Strategies for improving the modeling and interpretability of Bayesian networks

Author keywords

Bayesian networks; Knowledge discovery; Markov chains; Multivariate regression

Indexed keywords

DATA MINING; GENETIC ALGORITHMS; KNOWLEDGE ACQUISITION; MARKOV PROCESSES; REGRESSION ANALYSIS;

EID: 34250310031     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2006.10.005     Document Type: Article
Times cited : (24)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 6 (1974) 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 4
    • 34250357525 scopus 로고    scopus 로고
    • J. Cheng, D. Bell, W. Liu, Learning Bayesian networks from data: an efficient approach based on information theory, Technical Report, Department of Computer Science, University of Alberta, 1998.
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G., and Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovitz, E.2
  • 7
    • 34250333712 scopus 로고    scopus 로고
    • K.P. Dahal, C.J. Aldridge, S.J. Galloway, Evolutionary hybrid approaches for generation scheduling in power systems, European Journal of Operational Research, in press.
  • 10
    • 0036531188 scopus 로고    scopus 로고
    • Partial abductive inference in Bayesian belief networks - an evolutionary computation approach by using problem-specific genetic operators
    • Gamez J.A., de Campos L.M., and Moral S. Partial abductive inference in Bayesian belief networks - an evolutionary computation approach by using problem-specific genetic operators. IEEE Transactions on Evolutionary Computation 6 2 (2002) 105-131
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.2 , pp. 105-131
    • Gamez, J.A.1    de Campos, L.M.2    Moral, S.3
  • 13
    • 33846189118 scopus 로고    scopus 로고
    • H. Handa, O. Katai, Estimation of Bayesian network algorithm with GA searching for better network structure, in: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 1, 2003, pp. 436-439.
  • 14
    • 34250304609 scopus 로고    scopus 로고
    • E. Herskovits, Computer-based probabilistic networks construction, Ph.D. Thesis, Medical Information Sciences, University of Pittsburgh, 1991.
  • 15
    • 44649092482 scopus 로고    scopus 로고
    • J. Huang, J. Lu, C.X. Ling, Comparing Naive Bayes, decision trees, and SVM with AUC and accuracy, in: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 553-556.
  • 17
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters
    • Larrañaga P. Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters. IEEE Journal on Pattern Analysis and Machine Intelligence USA 18 9 (1996) 912-926
    • (1996) IEEE Journal on Pattern Analysis and Machine Intelligence USA , vol.18 , Issue.9 , pp. 912-926
    • Larrañaga, P.1
  • 18
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen S.L., and Spiegelhalter D.J. Local computations with probabilities on graphical structures and their application to expert systems. Journal of Royal Statistics Society B 50 2 (1988) 157-194
    • (1988) Journal of Royal Statistics Society B , vol.50 , Issue.2 , pp. 157-194
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 19
    • 38149048748 scopus 로고    scopus 로고
    • Gang Li, Fu Tong, Honghua Dai, Evolutionary structure learning algorithm for Bayesian network and penalized mutual information metric, in: Proceedings IEEE International Conference on Data Mining, ICDM 2001, pp. 615-616.
  • 20
    • 6344267195 scopus 로고    scopus 로고
    • Xiao-Lin Li, Sen-Miao Yuan, Xiang-Dong He, Learning Bayesian networks structures based on extending evolutionary programming, in: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 3, 2004, pp. 1594-1598.
  • 21
    • 34250381200 scopus 로고    scopus 로고
    • Bayes-N: an algorithm for learning Bayesian networks from data using local measures of information gain applied to classification problems
    • MICAI 2004: Advances in Artificial Intelligence, Springer Verlag, Germany
    • Morales M.M., Ramírez N.C., Andrade J.L.J., and Domínguez R.G. Bayes-N: an algorithm for learning Bayesian networks from data using local measures of information gain applied to classification problems. MICAI 2004: Advances in Artificial Intelligence. Lecture Notes in Artificial Intelligence vol. 2972 (2004), Springer Verlag, Germany 517-526
    • (2004) Lecture Notes in Artificial Intelligence , vol.2972 , pp. 517-526
    • Morales, M.M.1    Ramírez, N.C.2    Andrade, J.L.J.3    Domínguez, R.G.4
  • 22
    • 14244249746 scopus 로고    scopus 로고
    • M.M. Morales, R.G. Dominguez, N.C. Ramirez, A.G. Hernandez, J.L.J. Andrade, A method based on genetic algorithms and fuzzy logic to induce Bayesian networks, in: Proceedings of the Fifth Mexican International Conference in Computer Science, 2004, ENC 2004, pp. 176-180.
  • 23
    • 34250335981 scopus 로고    scopus 로고
    • K. Murphy, Dynamic Bayesian networks: representation, inference and learning, PhD Thesis, Computer Science Division, UC Berkeley, 2002.
  • 25
    • 78149293176 scopus 로고    scopus 로고
    • H. Peng, C. Ding, Structure search and stability enhancement of Bayesian networks, in: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 621-624.
  • 27
    • 0022594196 scopus 로고
    • An introduction to Hidden Markov models
    • Rabiner L.R., and Juang B.H. An introduction to Hidden Markov models. IEEE ASSP Magazine 3 1 (1986) 4-16
    • (1986) IEEE ASSP Magazine , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.R.1    Juang, B.H.2
  • 28
    • 34250374720 scopus 로고    scopus 로고
    • N.C. Ramírez, Building Bayesian networks from data: a constraint based approach, PhD Thesis, University of Sheffield, 2001.
  • 30
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica 14 (1978) 465-471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 31
    • 34250365246 scopus 로고    scopus 로고
    • C.A. Rocha, A. Tupiassu, C.R.L. Francês, Á. L. Santana, V. Gato, L. Rego, Support decision system for load forecast on power systems, in: III Congress of Technological Innovation on Power Systems - III Citenel, 2005 (in Portuguese).
  • 33
    • 29844453099 scopus 로고    scopus 로고
    • Load forecasting and learning of influence patterns of the socio-economic and climatic factors on the power consumption
    • Santana A.L., Francês C.R., Rocha C., Favero E., Rego L., Bezerra U., and Costa J. Load forecasting and learning of influence patterns of the socio-economic and climatic factors on the power consumption. Wseas Transactions on Mathematics 4 3 (2005) 176-184
    • (2005) Wseas Transactions on Mathematics , vol.4 , Issue.3 , pp. 176-184
    • Santana, A.L.1    Francês, C.R.2    Rocha, C.3    Favero, E.4    Rego, L.5    Bezerra, U.6    Costa, J.7
  • 34
    • 25144464662 scopus 로고    scopus 로고
    • Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
    • Sexton R.S., McMurtrey S., and Cleavenger D.J. Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem. European Journal of Operational Research 168 (2006) 1009-1018
    • (2006) European Journal of Operational Research , vol.168 , pp. 1009-1018
    • Sexton, R.S.1    McMurtrey, S.2    Cleavenger, D.J.3
  • 35
    • 33745697937 scopus 로고    scopus 로고
    • S. Shetty, M. Song, Structure learning of Bayesian networks using a semantic genetic algorithm-based approach, in: Third International Conference on Information Technology: Research and Education, 2005, ITRE 2005, pp. 454-458.
  • 37
    • 0031359867 scopus 로고    scopus 로고
    • C.C. Yang, Fuzzy Bayesian inference, in: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, 1997.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.