메뉴 건너뛰기




Volumn 47, Issue 3, 2009, Pages 199-217

Impact of censoring on learning Bayesian networks in survival modelling

Author keywords

Bayesian networks; Censoring; Medical decision support; Prognostic models in medicine; Structure learning; Survival analysis

Indexed keywords

CENSORING; MEDICAL DECISION SUPPORT; PROGNOSTIC MODELS IN MEDICINE; STRUCTURE LEARNING; SURVIVAL ANALYSIS;

EID: 70350728384     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2009.08.001     Document Type: Article
Times cited : (30)

References (59)
  • 3
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • Cox D.R. Regression models and life-tables. J Roy Stat Soc Ser B: Methodological 34 2 (1972) 187-220
    • (1972) J Roy Stat Soc Ser B: Methodological , vol.34 , Issue.2 , pp. 187-220
    • Cox, D.R.1
  • 6
    • 41949128553 scopus 로고    scopus 로고
    • Bayesian Weibull tree models for survival analysis of clinico-genomic data
    • Clarke J., and West M. Bayesian Weibull tree models for survival analysis of clinico-genomic data. Stat Methodol 5 3 (2008) 238-262
    • (2008) Stat Methodol , vol.5 , Issue.3 , pp. 238-262
    • Clarke, J.1    West, M.2
  • 8
    • 0344457318 scopus 로고    scopus 로고
    • Prognostic methods in medicine
    • Lucas P., and Abu-Hanna A. Prognostic methods in medicine. Artif Intell Med 15 2 (1999) 105-119
    • (1999) Artif Intell Med , vol.15 , Issue.2 , pp. 105-119
    • Lucas, P.1    Abu-Hanna, A.2
  • 11
    • 0031660017 scopus 로고    scopus 로고
    • Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma
    • Lucas P., Boot H., and Taal B. Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma. Methods Inform Med 37 (1998) 206-219
    • (1998) Methods Inform Med , vol.37 , pp. 206-219
    • Lucas, P.1    Boot, H.2    Taal, B.3
  • 12
    • 0033083435 scopus 로고    scopus 로고
    • Using probabilistic and decision-theoretic methods in treatment and prognosis modeling
    • Andreassen S., Riekehr C., Kristensen B., Schønheyder H.C., and Leibovici L. Using probabilistic and decision-theoretic methods in treatment and prognosis modeling. Artif Intell Med 15 2 (1999) 121-134
    • (1999) Artif Intell Med , vol.15 , Issue.2 , pp. 121-134
    • Andreassen, S.1    Riekehr, C.2    Kristensen, B.3    Schønheyder, H.C.4    Leibovici, L.5
  • 13
    • 0034235303 scopus 로고    scopus 로고
    • A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU
    • Lucas P.J.F., de Bruijn N.C., Schurink K., and Hoepelman A. A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU. Artif Intell Med 19 3 (2000) 251-279
    • (2000) Artif Intell Med , vol.19 , Issue.3 , pp. 251-279
    • Lucas, P.J.F.1    de Bruijn, N.C.2    Schurink, K.3    Hoepelman, A.4
  • 14
    • 34547933045 scopus 로고    scopus 로고
    • Using Bayesian networks to predict survival of liver transplant patients
    • Friedman C.P., Ash J., and Tarczy-Hornoch P. (Eds). American Medical Informatics Association, Bethesda, MD, USA
    • Hoot N., and Aronsky D. Using Bayesian networks to predict survival of liver transplant patients. In: Friedman C.P., Ash J., and Tarczy-Hornoch P. (Eds). AMIA annual symposium proceedings, vol. 2005. American Medical Informatics Association, Bethesda, MD, USA (2005) 345
    • (2005) AMIA annual symposium proceedings, vol. 2005 , pp. 345
    • Hoot, N.1    Aronsky, D.2
  • 15
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9 4 (1992) 309-347
    • (1992) Mach Learn , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 16
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: an approach based on the MDL principle
    • Lam W., and Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle. Comput Intell 10 4 (1994) 269-293
    • (1994) Comput Intell , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 17
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20 3 (1995) 197-243
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 19
    • 0001775899 scopus 로고
    • An algorithm for deciding if a set of observed independencies has a causal explanation
    • Dubois D., and Wellman M.P. (Eds), Morgan Kaufmann, San Fransisco, CA, USA
    • Verma T., and Pearl J. An algorithm for deciding if a set of observed independencies has a causal explanation. In: Dubois D., and Wellman M.P. (Eds). Proceedings of the 8th annual conference on uncertainty in artificial intelligence (1992), Morgan Kaufmann, San Fransisco, CA, USA 323-330
    • (1992) Proceedings of the 8th annual conference on uncertainty in artificial intelligence , pp. 323-330
    • Verma, T.1    Pearl, J.2
  • 20
    • 41549133874 scopus 로고    scopus 로고
    • A recursive method for structural learning of directed acyclic graphs
    • Xie X., and Geng Z. A recursive method for structural learning of directed acyclic graphs. J Mach Learn Res 9 (2008) 459-483
    • (2008) J Mach Learn Res , vol.9 , pp. 459-483
    • Xie, X.1    Geng, Z.2
  • 21
    • 48849110444 scopus 로고    scopus 로고
    • Using Markov blankets for causal structure learning
    • Pellet J.P., and Elisseeff A. Using Markov blankets for causal structure learning. J Mach Learn Res 9 (2008) 1295-1342
    • (2008) J Mach Learn Res , vol.9 , pp. 1295-1342
    • Pellet, J.P.1    Elisseeff, A.2
  • 23
    • 0031731379 scopus 로고    scopus 로고
    • Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
    • Kattan M.W., Hess K.R., and Beck J.R. Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression. Comput Biomed Res 31 5 (1998) 363-373
    • (1998) Comput Biomed Res , vol.31 , Issue.5 , pp. 363-373
    • Kattan, M.W.1    Hess, K.R.2    Beck, J.R.3
  • 25
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • Lisboa P.J.G., Wong H., Harris P., and Swindell R. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Med 28 1 (2003) 1-25
    • (2003) Artif Intell Med , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.J.G.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 26
    • 39149091349 scopus 로고    scopus 로고
    • An integrated framework for risk profiling of breast cancer patients following surgery
    • Jarman I.H., Etchells T.A., Martín J.D., and Lisboa P.J.G. An integrated framework for risk profiling of breast cancer patients following surgery. Artif Intell Med 42 3 (2008) 165-188
    • (2008) Artif Intell Med , vol.42 , Issue.3 , pp. 165-188
    • Jarman, I.H.1    Etchells, T.A.2    Martín, J.D.3    Lisboa, P.J.G.4
  • 27
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering D.M. Optimal structure identification with greedy search. J Mach Learn Res 3 (2002) 507-554
    • (2002) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 28
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N., and Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn 50 1 (2003) 95-125
    • (2003) Mach Learn , vol.50 , Issue.1 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 31
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: an information-theory based approach
    • Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif Intell 137 1-2 (2002) 43-90
    • (2002) Artif Intell , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 34
    • 33645281928 scopus 로고    scopus 로고
    • A simulated annealing-based method for learning Bayesian networks from statistical data
    • Janzura M., and Nielsen J. A simulated annealing-based method for learning Bayesian networks from statistical data. Int J Intell Syst 21 3 (2006) 335
    • (2006) Int J Intell Syst , vol.21 , Issue.3 , pp. 335
    • Janzura, M.1    Nielsen, J.2
  • 35
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29 2 (1997) 103-130
    • (1997) Mach Learn , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 37
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 1 (1982) 29-36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 38
    • 0006117317 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • Gant V., and Dybowski R. (Eds), Cambridge University Press, Cambridge, UK
    • Ripley B.D., and Ripley R.M. Neural networks as statistical methods in survival analysis. In: Gant V., and Dybowski R. (Eds). Clinical applications of artificial neural networks (2001), Cambridge University Press, Cambridge, UK 237-255
    • (2001) Clinical applications of artificial neural networks , pp. 237-255
    • Ripley, B.D.1    Ripley, R.M.2
  • 39
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • Kaplan E.L., and Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 53 (1958) 457-481
    • (1958) J Am Stat Assoc , vol.53 , pp. 457-481
    • Kaplan, E.L.1    Meier, P.2
  • 40
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf E., Schmoor C., Sauerbrei W., and Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med 18 1718 (1999) 2529-2545
    • (1999) Stat Med , vol.18 , Issue.1718 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 42
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • Royston P., and Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 23 5 (2004) 723-748
    • (2004) Stat Med , vol.23 , Issue.5 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 43
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R., Augustin T., and Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med 24 (2005) 1713-1723
    • (2005) Stat Med , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 45
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Bajcsy R. (Ed), Morgan Kaufmann, San Fransisco, CA, USA
    • Fayyad U.M., and Irani K.B. Multi-interval discretization of continuous-valued attributes for classification learning. In: Bajcsy R. (Ed). Proceedings of the 13th international joint conference on artificial intelligence (1993), Morgan Kaufmann, San Fransisco, CA, USA 1022-1027
    • (1993) Proceedings of the 13th international joint conference on artificial intelligence , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 46
    • 0032626964 scopus 로고    scopus 로고
    • An application of changepoint methods in studying the effect of age on survival in breast cancer
    • Contal C., and O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal 30 3 (1999) 253-270
    • (1999) Comput Stat Data Anal , vol.30 , Issue.3 , pp. 253-270
    • Contal, C.1    O'Quigley, J.2
  • 49
    • 0028080742 scopus 로고
    • Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group
    • Schumacher M., Bastert G., Bojar H., Hubner K., Olschewski M., Sauerbrei W., et al. Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group. J Clin Oncol 12 10 (1994) 2086-2093
    • (1994) J Clin Oncol , vol.12 , Issue.10 , pp. 2086-2093
    • Schumacher, M.1    Bastert, G.2    Bojar, H.3    Hubner, K.4    Olschewski, M.5    Sauerbrei, W.6
  • 50
    • 1842607847 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing, Accessed: 7 January 2009
    • R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org (Accessed: 7 January 2009)
    • R: A language and environment for statistical computing
  • 52
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A., Eisen M., Davis R., Ma C., Lossos I., Rosenwald A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 6769 (2000) 503-511
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.1    Eisen, M.2    Davis, R.3    Ma, C.4    Lossos, I.5    Rosenwald, A.6
  • 53
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • Dantzig G.B. (Ed). National Academy of Sciences, Washington, DC, USA
    • Wolberg W.H., and Mangasarian O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In: Dantzig G.B. (Ed). Proceedings of the national academy of sciences of the United States of America, vol. 87. National Academy of Sciences, Washington, DC, USA (1990) 9193-9196
    • (1990) Proceedings of the national academy of sciences of the United States of America, vol. 87 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.L.2
  • 54
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips
    • Blanco R., Inza I., Merino M., Quiroga J., and Larrańaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips. J Biomed Inform 38 5 (2005) 376-388
    • (2005) J Biomed Inform , vol.38 , Issue.5 , pp. 376-388
    • Blanco, R.1    Inza, I.2    Merino, M.3    Quiroga, J.4    Larrańaga, P.5
  • 55
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
    • Sierra B., and Larranaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif Intell Med 14 1-2 (1998) 215-230
    • (1998) Artif Intell Med , vol.14 , Issue.1-2 , pp. 215-230
    • Sierra, B.1    Larranaga, P.2
  • 56
    • 84974667967 scopus 로고    scopus 로고
    • Learning dynamic Bayesian belief networks using conditional phase-type distributions
    • Marshall A., McClean S., Shapcott M., and Millard P. Learning dynamic Bayesian belief networks using conditional phase-type distributions. Lect Notes Comput Sci (2000) 516-523
    • (2000) Lect Notes Comput Sci , pp. 516-523
    • Marshall, A.1    McClean, S.2    Shapcott, M.3    Millard, P.4
  • 57
    • 0034192691 scopus 로고    scopus 로고
    • Evolutionary computation in medicine: an overview
    • Peña-Reyes C.A., and Sipper M. Evolutionary computation in medicine: an overview. Artif Intell Med 19 1 (2000) 1-23
    • (2000) Artif Intell Med , vol.19 , Issue.1 , pp. 1-23
    • Peña-Reyes, C.A.1    Sipper, M.2
  • 58
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 34 2 (2005) 113-127
    • (2005) Artif Intell Med , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 59
    • 0343081009 scopus 로고    scopus 로고
    • Machine learning for survival analysis: a case study on recurrence of prostate cancer
    • Zupan B., Demsar J., Kattan M.W., Beck R., and Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 20 1 (2000) 59-75
    • (2000) Artif Intell Med , vol.20 , Issue.1 , pp. 59-75
    • Zupan, B.1    Demsar, J.2    Kattan, M.W.3    Beck, R.4    Bratko, I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.