-
2
-
-
0003432299
-
-
John Wiley & Sons, Hoboken, NJ, USA
-
Lee E.T., and Wang J.W. Statistical methods for survival data analysis. 3rd ed. (2003), John Wiley & Sons, Hoboken, NJ, USA
-
(2003)
Statistical methods for survival data analysis. 3rd ed.
-
-
Lee, E.T.1
Wang, J.W.2
-
3
-
-
0000336139
-
Regression models and life-tables
-
Cox D.R. Regression models and life-tables. J Roy Stat Soc Ser B: Methodological 34 2 (1972) 187-220
-
(1972)
J Roy Stat Soc Ser B: Methodological
, vol.34
, Issue.2
, pp. 187-220
-
-
Cox, D.R.1
-
4
-
-
0003802343
-
-
Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA
-
Brieman L., Friedman J.H., Olshen R.A., and Stone C.J. Classification and regression trees (1984), Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA
-
(1984)
Classification and regression trees
-
-
Brieman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
6
-
-
41949128553
-
Bayesian Weibull tree models for survival analysis of clinico-genomic data
-
Clarke J., and West M. Bayesian Weibull tree models for survival analysis of clinico-genomic data. Stat Methodol 5 3 (2008) 238-262
-
(2008)
Stat Methodol
, vol.5
, Issue.3
, pp. 238-262
-
-
Clarke, J.1
West, M.2
-
7
-
-
0003922190
-
-
John Wiley & Sons, Hoboken, NJ, USA
-
Duda R.O., Hart P.E., and Stork D.G. Pattern classification. 2nd ed. (2001), John Wiley & Sons, Hoboken, NJ, USA
-
(2001)
Pattern classification. 2nd ed.
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
8
-
-
0344457318
-
Prognostic methods in medicine
-
Lucas P., and Abu-Hanna A. Prognostic methods in medicine. Artif Intell Med 15 2 (1999) 105-119
-
(1999)
Artif Intell Med
, vol.15
, Issue.2
, pp. 105-119
-
-
Lucas, P.1
Abu-Hanna, A.2
-
11
-
-
0031660017
-
Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma
-
Lucas P., Boot H., and Taal B. Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma. Methods Inform Med 37 (1998) 206-219
-
(1998)
Methods Inform Med
, vol.37
, pp. 206-219
-
-
Lucas, P.1
Boot, H.2
Taal, B.3
-
12
-
-
0033083435
-
Using probabilistic and decision-theoretic methods in treatment and prognosis modeling
-
Andreassen S., Riekehr C., Kristensen B., Schønheyder H.C., and Leibovici L. Using probabilistic and decision-theoretic methods in treatment and prognosis modeling. Artif Intell Med 15 2 (1999) 121-134
-
(1999)
Artif Intell Med
, vol.15
, Issue.2
, pp. 121-134
-
-
Andreassen, S.1
Riekehr, C.2
Kristensen, B.3
Schønheyder, H.C.4
Leibovici, L.5
-
13
-
-
0034235303
-
A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU
-
Lucas P.J.F., de Bruijn N.C., Schurink K., and Hoepelman A. A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU. Artif Intell Med 19 3 (2000) 251-279
-
(2000)
Artif Intell Med
, vol.19
, Issue.3
, pp. 251-279
-
-
Lucas, P.J.F.1
de Bruijn, N.C.2
Schurink, K.3
Hoepelman, A.4
-
14
-
-
34547933045
-
Using Bayesian networks to predict survival of liver transplant patients
-
Friedman C.P., Ash J., and Tarczy-Hornoch P. (Eds). American Medical Informatics Association, Bethesda, MD, USA
-
Hoot N., and Aronsky D. Using Bayesian networks to predict survival of liver transplant patients. In: Friedman C.P., Ash J., and Tarczy-Hornoch P. (Eds). AMIA annual symposium proceedings, vol. 2005. American Medical Informatics Association, Bethesda, MD, USA (2005) 345
-
(2005)
AMIA annual symposium proceedings, vol. 2005
, pp. 345
-
-
Hoot, N.1
Aronsky, D.2
-
15
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9 4 (1992) 309-347
-
(1992)
Mach Learn
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
16
-
-
0028482006
-
Learning Bayesian belief networks: an approach based on the MDL principle
-
Lam W., and Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle. Comput Intell 10 4 (1994) 269-293
-
(1994)
Comput Intell
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
17
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20 3 (1995) 197-243
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
18
-
-
0000854197
-
The Bayesian structural EM algorithm
-
Cooper G.F., and Moral S. (Eds), Morgan Kaufmann, San Fransisco, CA, USA
-
Friedman N. The Bayesian structural EM algorithm. In: Cooper G.F., and Moral S. (Eds). Proceedings of the 14th annual conference on uncertainty in artificial intelligence (1998), Morgan Kaufmann, San Fransisco, CA, USA 129-138
-
(1998)
Proceedings of the 14th annual conference on uncertainty in artificial intelligence
, pp. 129-138
-
-
Friedman, N.1
-
19
-
-
0001775899
-
An algorithm for deciding if a set of observed independencies has a causal explanation
-
Dubois D., and Wellman M.P. (Eds), Morgan Kaufmann, San Fransisco, CA, USA
-
Verma T., and Pearl J. An algorithm for deciding if a set of observed independencies has a causal explanation. In: Dubois D., and Wellman M.P. (Eds). Proceedings of the 8th annual conference on uncertainty in artificial intelligence (1992), Morgan Kaufmann, San Fransisco, CA, USA 323-330
-
(1992)
Proceedings of the 8th annual conference on uncertainty in artificial intelligence
, pp. 323-330
-
-
Verma, T.1
Pearl, J.2
-
20
-
-
41549133874
-
A recursive method for structural learning of directed acyclic graphs
-
Xie X., and Geng Z. A recursive method for structural learning of directed acyclic graphs. J Mach Learn Res 9 (2008) 459-483
-
(2008)
J Mach Learn Res
, vol.9
, pp. 459-483
-
-
Xie, X.1
Geng, Z.2
-
21
-
-
48849110444
-
Using Markov blankets for causal structure learning
-
Pellet J.P., and Elisseeff A. Using Markov blankets for causal structure learning. J Mach Learn Res 9 (2008) 1295-1342
-
(2008)
J Mach Learn Res
, vol.9
, pp. 1295-1342
-
-
Pellet, J.P.1
Elisseeff, A.2
-
23
-
-
0031731379
-
Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
-
Kattan M.W., Hess K.R., and Beck J.R. Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression. Comput Biomed Res 31 5 (1998) 363-373
-
(1998)
Comput Biomed Res
, vol.31
, Issue.5
, pp. 363-373
-
-
Kattan, M.W.1
Hess, K.R.2
Beck, J.R.3
-
24
-
-
1842856149
-
A combined neural network and decision trees model for prognosis of breast cancer relapse
-
Jerez-Aragonés J., Gómez-Ruiz J., Ramos-Jiménez G., Muñoz-Pérez J., and Alba-Conejo E. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 27 1 (2003) 45-63
-
(2003)
Artif Intell Med
, vol.27
, Issue.1
, pp. 45-63
-
-
Jerez-Aragonés, J.1
Gómez-Ruiz, J.2
Ramos-Jiménez, G.3
Muñoz-Pérez, J.4
Alba-Conejo, E.5
-
25
-
-
0038162240
-
A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
-
Lisboa P.J.G., Wong H., Harris P., and Swindell R. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Med 28 1 (2003) 1-25
-
(2003)
Artif Intell Med
, vol.28
, Issue.1
, pp. 1-25
-
-
Lisboa, P.J.G.1
Wong, H.2
Harris, P.3
Swindell, R.4
-
26
-
-
39149091349
-
An integrated framework for risk profiling of breast cancer patients following surgery
-
Jarman I.H., Etchells T.A., Martín J.D., and Lisboa P.J.G. An integrated framework for risk profiling of breast cancer patients following surgery. Artif Intell Med 42 3 (2008) 165-188
-
(2008)
Artif Intell Med
, vol.42
, Issue.3
, pp. 165-188
-
-
Jarman, I.H.1
Etchells, T.A.2
Martín, J.D.3
Lisboa, P.J.G.4
-
27
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering D.M. Optimal structure identification with greedy search. J Mach Learn Res 3 (2002) 507-554
-
(2002)
J Mach Learn Res
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
28
-
-
0037262841
-
Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
-
Friedman N., and Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn 50 1 (2003) 95-125
-
(2003)
Mach Learn
, vol.50
, Issue.1
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
29
-
-
0003398906
-
-
Cambridge University Press, Cambridge, UK
-
Pearl J. Causality: models, reasoning, and inference (2000), Cambridge University Press, Cambridge, UK
-
(2000)
Causality: models, reasoning, and inference
-
-
Pearl, J.1
-
30
-
-
0003614273
-
-
MIT Press, Cambridge, MA, USA
-
Spirtes P., Glymour C., and Scheines R. Causation, prediction, and search (2000), MIT Press, Cambridge, MA, USA
-
(2000)
Causation, prediction, and search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
31
-
-
0036567524
-
Learning Bayesian networks from data: an information-theory based approach
-
Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif Intell 137 1-2 (2002) 43-90
-
(2002)
Artif Intell
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
33
-
-
0003584577
-
-
Prentice Hall, Upper Saddle River, NJ, USA
-
Russell S.J., and Norvig P. Artificial intelligence: a modern approach. 2nd ed. (2002), Prentice Hall, Upper Saddle River, NJ, USA
-
(2002)
Artificial intelligence: a modern approach. 2nd ed.
-
-
Russell, S.J.1
Norvig, P.2
-
34
-
-
33645281928
-
A simulated annealing-based method for learning Bayesian networks from statistical data
-
Janzura M., and Nielsen J. A simulated annealing-based method for learning Bayesian networks from statistical data. Int J Intell Syst 21 3 (2006) 335
-
(2006)
Int J Intell Syst
, vol.21
, Issue.3
, pp. 335
-
-
Janzura, M.1
Nielsen, J.2
-
35
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos P., and Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29 2 (1997) 103-130
-
(1997)
Mach Learn
, vol.29
, Issue.2
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
36
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell F.E., Califf R.M., Pryor D.B., Lee K.L., and Rosati R.A. Evaluating the yield of medical tests. J Am Med Assoc 247 18 (1982) 2543-2546
-
(1982)
J Am Med Assoc
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
37
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 1 (1982) 29-36
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
38
-
-
0006117317
-
Neural networks as statistical methods in survival analysis
-
Gant V., and Dybowski R. (Eds), Cambridge University Press, Cambridge, UK
-
Ripley B.D., and Ripley R.M. Neural networks as statistical methods in survival analysis. In: Gant V., and Dybowski R. (Eds). Clinical applications of artificial neural networks (2001), Cambridge University Press, Cambridge, UK 237-255
-
(2001)
Clinical applications of artificial neural networks
, pp. 237-255
-
-
Ripley, B.D.1
Ripley, R.M.2
-
39
-
-
33845382806
-
Nonparametric estimation from incomplete observations
-
Kaplan E.L., and Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 53 (1958) 457-481
-
(1958)
J Am Stat Assoc
, vol.53
, pp. 457-481
-
-
Kaplan, E.L.1
Meier, P.2
-
40
-
-
0033619170
-
Assessment and comparison of prognostic classification schemes for survival data
-
Graf E., Schmoor C., Sauerbrei W., and Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med 18 1718 (1999) 2529-2545
-
(1999)
Stat Med
, vol.18
, Issue.1718
, pp. 2529-2545
-
-
Graf, E.1
Schmoor, C.2
Sauerbrei, W.3
Schumacher, M.4
-
41
-
-
0003612091
-
-
Ellis Horwood, Upper Saddle River, NJ, USA
-
Michie D., Spiegelhalter D.J., Taylor C.C., and Campbell J. Machine learning, neural and statistical classification (1995), Ellis Horwood, Upper Saddle River, NJ, USA
-
(1995)
Machine learning, neural and statistical classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
Campbell, J.4
-
42
-
-
1442351098
-
A new measure of prognostic separation in survival data
-
Royston P., and Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 23 5 (2004) 723-748
-
(2004)
Stat Med
, vol.23
, Issue.5
, pp. 723-748
-
-
Royston, P.1
Sauerbrei, W.2
-
43
-
-
19944372078
-
Generating survival times to simulate Cox proportional hazards models
-
Bender R., Augustin T., and Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med 24 (2005) 1713-1723
-
(2005)
Stat Med
, vol.24
, pp. 1713-1723
-
-
Bender, R.1
Augustin, T.2
Blettner, M.3
-
44
-
-
0003684449
-
-
Springer-Verlag, New York, NY, USA
-
Hastie T., Tibshirani R., and Friedman J. The elements of statistical learning: data mining, inference, and prediction (2001), Springer-Verlag, New York, NY, USA
-
(2001)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
45
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
Bajcsy R. (Ed), Morgan Kaufmann, San Fransisco, CA, USA
-
Fayyad U.M., and Irani K.B. Multi-interval discretization of continuous-valued attributes for classification learning. In: Bajcsy R. (Ed). Proceedings of the 13th international joint conference on artificial intelligence (1993), Morgan Kaufmann, San Fransisco, CA, USA 1022-1027
-
(1993)
Proceedings of the 13th international joint conference on artificial intelligence
, pp. 1022-1027
-
-
Fayyad, U.M.1
Irani, K.B.2
-
46
-
-
0032626964
-
An application of changepoint methods in studying the effect of age on survival in breast cancer
-
Contal C., and O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal 30 3 (1999) 253-270
-
(1999)
Comput Stat Data Anal
, vol.30
, Issue.3
, pp. 253-270
-
-
Contal, C.1
O'Quigley, J.2
-
47
-
-
0003440032
-
-
Springer-Verlag, New York, NY, USA
-
Klein J.P., and Moeschberger M.L. Survival analysis: techniques for censored and truncated data. 2nd ed. (2003), Springer-Verlag, New York, NY, USA
-
(2003)
Survival analysis: techniques for censored and truncated data. 2nd ed.
-
-
Klein, J.P.1
Moeschberger, M.L.2
-
48
-
-
0003855105
-
-
John Wiley & Sons, Hoboken, NJ, USA
-
Fleming T.R., and Harrington D.P. Counting processes and survival analysis (1991), John Wiley & Sons, Hoboken, NJ, USA
-
(1991)
Counting processes and survival analysis
-
-
Fleming, T.R.1
Harrington, D.P.2
-
49
-
-
0028080742
-
Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group
-
Schumacher M., Bastert G., Bojar H., Hubner K., Olschewski M., Sauerbrei W., et al. Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group. J Clin Oncol 12 10 (1994) 2086-2093
-
(1994)
J Clin Oncol
, vol.12
, Issue.10
, pp. 2086-2093
-
-
Schumacher, M.1
Bastert, G.2
Bojar, H.3
Hubner, K.4
Olschewski, M.5
Sauerbrei, W.6
-
50
-
-
1842607847
-
-
Vienna, Austria: R Foundation for Statistical Computing, Accessed: 7 January 2009
-
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org (Accessed: 7 January 2009)
-
R: A language and environment for statistical computing
-
-
-
51
-
-
0346656880
-
Bagging survival trees
-
Hothorn T., Lausen B., Benner A., and Radespiel-Tröger M. Bagging survival trees. Stat Med 23 1 (2004) 77-91
-
(2004)
Stat Med
, vol.23
, Issue.1
, pp. 77-91
-
-
Hothorn, T.1
Lausen, B.2
Benner, A.3
Radespiel-Tröger, M.4
-
52
-
-
0034598746
-
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
-
Alizadeh A., Eisen M., Davis R., Ma C., Lossos I., Rosenwald A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 6769 (2000) 503-511
-
(2000)
Nature
, vol.403
, Issue.6769
, pp. 503-511
-
-
Alizadeh, A.1
Eisen, M.2
Davis, R.3
Ma, C.4
Lossos, I.5
Rosenwald, A.6
-
53
-
-
0025651706
-
Multisurface method of pattern separation for medical diagnosis applied to breast cytology
-
Dantzig G.B. (Ed). National Academy of Sciences, Washington, DC, USA
-
Wolberg W.H., and Mangasarian O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In: Dantzig G.B. (Ed). Proceedings of the national academy of sciences of the United States of America, vol. 87. National Academy of Sciences, Washington, DC, USA (1990) 9193-9196
-
(1990)
Proceedings of the national academy of sciences of the United States of America, vol. 87
, pp. 9193-9196
-
-
Wolberg, W.H.1
Mangasarian, O.L.2
-
54
-
-
26044441615
-
Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips
-
Blanco R., Inza I., Merino M., Quiroga J., and Larrańaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips. J Biomed Inform 38 5 (2005) 376-388
-
(2005)
J Biomed Inform
, vol.38
, Issue.5
, pp. 376-388
-
-
Blanco, R.1
Inza, I.2
Merino, M.3
Quiroga, J.4
Larrańaga, P.5
-
55
-
-
0344447109
-
Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
-
Sierra B., and Larranaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif Intell Med 14 1-2 (1998) 215-230
-
(1998)
Artif Intell Med
, vol.14
, Issue.1-2
, pp. 215-230
-
-
Sierra, B.1
Larranaga, P.2
-
56
-
-
84974667967
-
Learning dynamic Bayesian belief networks using conditional phase-type distributions
-
Marshall A., McClean S., Shapcott M., and Millard P. Learning dynamic Bayesian belief networks using conditional phase-type distributions. Lect Notes Comput Sci (2000) 516-523
-
(2000)
Lect Notes Comput Sci
, pp. 516-523
-
-
Marshall, A.1
McClean, S.2
Shapcott, M.3
Millard, P.4
-
57
-
-
0034192691
-
Evolutionary computation in medicine: an overview
-
Peña-Reyes C.A., and Sipper M. Evolutionary computation in medicine: an overview. Artif Intell Med 19 1 (2000) 1-23
-
(2000)
Artif Intell Med
, vol.19
, Issue.1
, pp. 1-23
-
-
Peña-Reyes, C.A.1
Sipper, M.2
-
58
-
-
19344364327
-
Predicting breast cancer survivability: a comparison of three data mining methods
-
Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 34 2 (2005) 113-127
-
(2005)
Artif Intell Med
, vol.34
, Issue.2
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
59
-
-
0343081009
-
Machine learning for survival analysis: a case study on recurrence of prostate cancer
-
Zupan B., Demsar J., Kattan M.W., Beck R., and Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 20 1 (2000) 59-75
-
(2000)
Artif Intell Med
, vol.20
, Issue.1
, pp. 59-75
-
-
Zupan, B.1
Demsar, J.2
Kattan, M.W.3
Beck, R.4
Bratko, I.5
|