메뉴 건너뛰기




Volumn 22, Issue 6, 2009, Pages 461-470

Structure identification of Bayesian classifiers based on GMDH

Author keywords

Bayesian network; Classification; GMBC; GMDH; Structure identification

Indexed keywords

ADAPTIVE STRUCTURE; BAYESIAN CLASSIFICATION; BAYESIAN CLASSIFIER; CLASSIFICATION; DATA SETS; DEPENDENCE ANALYSIS; GMBC; GMDH; PRIOR INFORMATION; STRUCTURE IDENTIFICATION;

EID: 67650498428     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2009.06.005     Document Type: Article
Times cited : (40)

References (43)
  • 1
    • 60949096801 scopus 로고    scopus 로고
    • Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks
    • Abdel-Aal R.E., Elhadidy M.A., and Shaahid S.M. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks. Renewable Energy 34 7 (2008) 1686-1699
    • (2008) Renewable Energy , vol.34 , Issue.7 , pp. 1686-1699
    • Abdel-Aal, R.E.1    Elhadidy, M.A.2    Shaahid, S.M.3
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical identification model
    • Akaike H. A new look at the statistical identification model. IEEE Transactions on Automatic Control 19 (1974) 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0015035795 scopus 로고
    • System identification, a survey
    • Astrom K.J., and Eykhoff P. System identification, a survey. Automatica 7 (1971) 123-162
    • (1971) Automatica , vol.7 , pp. 123-162
    • Astrom, K.J.1    Eykhoff, P.2
  • 5
    • 51149091221 scopus 로고    scopus 로고
    • Constructing Bayesian networks for criminal profiling from limited data
    • Baumgartner K., Ferrari S., and Palermo G. Constructing Bayesian networks for criminal profiling from limited data. Knowledge-Based Systems 21 (2008) 563-572
    • (2008) Knowledge-Based Systems , Issue.21 , pp. 563-572
    • Baumgartner, K.1    Ferrari, S.2    Palermo, G.3
  • 6
    • 0036567524 scopus 로고    scopus 로고
    • Learning belief networks from data: an information theory based approach
    • Cheng J., Bell D., and Liu W. Learning belief networks from data: an information theory based approach. Artificial Intelligence 137 1-2 (2002) 43-90
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Bell, D.2    Liu, W.3
  • 8
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Fisher D., and Lenz H. (Eds), Springer-Verlag
    • Chickering D.M. Learning Bayesian networks is NP-complete. In: Fisher D., and Lenz H. (Eds). Learning from Data: Artificial Intelligence and Statistics vol. V (1996), Springer-Verlag 121-130
    • (1996) Learning from Data: Artificial Intelligence and Statistics , vol.V , pp. 121-130
    • Chickering, D.M.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 11
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 13
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • International Joint Conference on Artificial Intelligence
    • U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of 13th International Joint Conference on Artificial Intelligence, 1993, pp. 1022-1027.
    • (1993) Proceedings of 13th , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 14
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32 (1937) 675-701
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 18
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (1979) 65-70
    • (1979) Scandinavian Journal of Statistics , vol.6 , pp. 65-70
    • Holm, S.1
  • 21
    • 0001618197 scopus 로고
    • Heuristic self-organization in problems of engineering cybernetics
    • Ivakhnenko A.G. Heuristic self-organization in problems of engineering cybernetics. Automatica 6 2 (1970) 207-219
    • (1970) Automatica , vol.6 , Issue.2 , pp. 207-219
    • Ivakhnenko, A.G.1
  • 22
    • 0003807759 scopus 로고
    • The group method of data handling in prediction problems
    • Ivakhnenko A.G. The group method of data handling in prediction problems. Soviet Automatic Control c/c of Avtomatika 9 6 (1976) 21-30
    • (1976) Soviet Automatic Control c/c of Avtomatika , vol.9 , Issue.6 , pp. 21-30
    • Ivakhnenko, A.G.1
  • 24
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G. Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 29
    • 60549115783 scopus 로고    scopus 로고
    • Investigating the efficiency in oil futures market based on GMDH approach
    • Mehrara M., Moeini A., Ahrari M., and Erfanifard A. Investigating the efficiency in oil futures market based on GMDH approach. Expert Systems with Applications 36 4 (2009) 7479-7483
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7479-7483
    • Mehrara, M.1    Moeini, A.2    Ahrari, M.3    Erfanifard, A.4
  • 30
    • 67650426226 scopus 로고    scopus 로고
    • C. Merz, P. Murphy, UCI Machine Learning Repository, University of California, Irvine, 2007. .
    • C. Merz, P. Murphy, UCI Machine Learning Repository, University of California, Irvine, 2007. .
  • 34
    • 0004184461 scopus 로고    scopus 로고
    • Evolutionary optimization of fuzzy models in fuzzy logic: a framework for the new millennium
    • Dimitrov V., and Korotkich V. (Eds), Physica-Verlag, Wurzburg
    • Pedrycz W., and Reformat M. Evolutionary optimization of fuzzy models in fuzzy logic: a framework for the new millennium. In: Dimitrov V., and Korotkich V. (Eds). Studies in Fuzziness and Soft Computing vol. 8 (1996), Physica-Verlag, Wurzburg 51-67
    • (1996) Studies in Fuzziness and Soft Computing , vol.8 , pp. 51-67
    • Pedrycz, W.1    Reformat, M.2
  • 35
    • 33746334456 scopus 로고    scopus 로고
    • Supervised classification with conditional Gaussian networks: increasing the structure complexity from naive Bayes
    • Perez A., Larranaga P., and Inza I. Supervised classification with conditional Gaussian networks: increasing the structure complexity from naive Bayes. International Journal of Approximate Reasoning 43 (2006) 1-25
    • (2006) International Journal of Approximate Reasoning , vol.43 , pp. 1-25
    • Perez, A.1    Larranaga, P.2    Inza, I.3
  • 36
  • 38
    • 0025487085 scopus 로고
    • An averaged regularity criterion for the group method of data handling in the problem of searching for the best regression
    • Sarychev A.P. An averaged regularity criterion for the group method of data handling in the problem of searching for the best regression. Soviet Journal of Automation and Information Sciences c/c of Avtomatika 23 5 (1990) 24-29
    • (1990) Soviet Journal of Automation and Information Sciences c/c of Avtomatika , vol.23 , Issue.5 , pp. 24-29
    • Sarychev, A.P.1
  • 39
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 42
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • Tassadduq I., Rehman S., and Bubshait K. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renewable Energy 25 (2002) 545-554
    • (2002) Renewable Energy , vol.25 , pp. 545-554
    • Tassadduq, I.1    Rehman, S.2    Bubshait, K.3
  • 43
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: a quantitative study of their impacts
    • Zhu X.Q., and Wu X.D. Class noise vs. attribute noise: a quantitative study of their impacts. Artificial Intelligence Review 22 (2004) 177-210
    • (2004) Artificial Intelligence Review , vol.22 , pp. 177-210
    • Zhu, X.Q.1    Wu, X.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.