-
1
-
-
34250653040
-
-
A. Perez-Uribe, B. Hirsbrunner, Learning and foraging in robot-bees, in: SAB 2000 Proceedings Supplement Book, International Society for Adaptive Behavior, Honolulu, Hawaii, (2000) pp. 185-194.
-
-
-
-
4
-
-
34250631713
-
-
C.L. Blake, C.J. Merz, UCI repository of machine learning databases. Available from: .
-
-
-
-
5
-
-
0033882604
-
A tabu-search-based heuristic for clustering
-
Sung C.S., and Jin H.W. A tabu-search-based heuristic for clustering. Pattern Recogn. 33 (2000) 849-858
-
(2000)
Pattern Recogn.
, vol.33
, pp. 849-858
-
-
Sung, C.S.1
Jin, H.W.2
-
6
-
-
0000014486
-
Cluster analysis of multivariate data: efficiency versus interpretability of classifications
-
Forgy E.W. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21 3 (1965) 768-769
-
(1965)
Biometrics
, vol.21
, Issue.3
, pp. 768-769
-
-
Forgy, E.W.1
-
8
-
-
34250655508
-
-
H.A. Abbass, A monogenous MBO approach to satisfiability, in: Proceeding of the International Conference on Computational Intelligence for Modelling, Control and Automation, CIMCA'2001, Las Vegas, NV, USA, 2001.
-
-
-
-
9
-
-
0034870046
-
-
H.A. Abbass, Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach, in: The Congress on Evolutionary Computation (CEC2001), Seoul, Korea, May 2001, (2001) pp. 207-214.
-
-
-
-
10
-
-
0002930112
-
Mating designs
-
Rinderer T.E. (Ed), Academic Press Inc., NY
-
Laidlaw H.H., and Page R.E. Mating designs. In: Rinderer T.E. (Ed). Bee Genetics and Breeding (1986), Academic Press Inc., NY 323-341
-
(1986)
Bee Genetics and Breeding
, pp. 323-341
-
-
Laidlaw, H.H.1
Page, R.E.2
-
12
-
-
0029478402
-
Tabu-search-based heuristic for clustering
-
Al-Sultan K.S. Tabu-search-based heuristic for clustering. Pattern Recogn. 28 (1995) 1443-1451
-
(1995)
Pattern Recogn.
, vol.28
, pp. 1443-1451
-
-
Al-Sultan, K.S.1
-
14
-
-
34250646792
-
-
O. Bozorg Haddad, A. Afshar, M.A. Mariñ o, Honey bees mating optimization algorithm (HBMO); a new heuristic approach for engineering optimization, in: Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization (ICMSA0/05), Sharjah, UAE, 1-3 February (2005).
-
-
-
-
15
-
-
34250617638
-
-
O. Bozorg Haddad, A. Afshar, MBO (Marriage Bees Optimization), A new heuristic approach in hydro systems design and operation, in: Proceedings of 1st International Conference On Managing Rivers In The 21st Century: Issues and Challenges, Penang, Malaysia, 21-23 September 2004, pp. 499-504.
-
-
-
-
18
-
-
0019065089
-
The evolution of multiple mating behaviors by honey-bee queens (Apis mellifera L.)
-
Page R.E. The evolution of multiple mating behaviors by honey-bee queens (Apis mellifera L.). J. Genet. 96 (1980) 263-273
-
(1980)
J. Genet.
, vol.96
, pp. 263-273
-
-
Page, R.E.1
-
20
-
-
0021202650
-
K-means type algorithms: a generalized convergence theorem and characterization of local optimality
-
Selim S.Z., and Ismail M.A. K-means type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984) 81-87
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, pp. 81-87
-
-
Selim, S.Z.1
Ismail, M.A.2
-
21
-
-
0026359031
-
A simulated annealing algorithm for the clustering problem
-
Selim S.Z., and Al-Sultan K. A simulated annealing algorithm for the clustering problem. Pattern Recogn. 24 10 (1991) 1003-1008
-
(1991)
Pattern Recogn.
, vol.24
, Issue.10
, pp. 1003-1008
-
-
Selim, S.Z.1
Al-Sultan, K.2
-
22
-
-
0033715579
-
Genetic algorithm-based clustering technique
-
Mualik U., and Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recogn. 33 (2000) 1455-1465
-
(2000)
Pattern Recogn.
, vol.33
, pp. 1455-1465
-
-
Mualik, U.1
Bandyopadhyay, S.2
-
23
-
-
34250666405
-
K-harmonic means data clustering with simulated annealing heuristic
-
Gungor Z., and Unler A. K-harmonic means data clustering with simulated annealing heuristic. Appl. Math. Comput. (2006)
-
(2006)
Appl. Math. Comput.
-
-
Gungor, Z.1
Unler, A.2
|