-
1
-
-
67649450485
-
Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells
-
19583950 10.1016/j.cmet.2009.06.002 1:CAS:528:DC%2BD1MXhsVChsL3N
-
Back, S.H.; D. Scheuner, J. Han, B. Song, M. Ribick, J. Wang, R.D. Gildersleeve, S. Pennathur, and R.J. Kaufman. 2009. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metabolism 10: 13-26.
-
(2009)
Cell Metabolism
, vol.10
, pp. 13-26
-
-
Back, S.H.1
Scheuner, D.2
Han, J.3
Song, B.4
Ribick, M.5
Wang, J.6
Gildersleeve, R.D.7
Pennathur, S.8
Kaufman, R.J.9
-
2
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
17132049 10.1371/journal.pbio.0040423
-
Bernales, S.; K.L. Mcdonald, and P. Walter. 2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biology 4: e423.
-
(2006)
PLoS Biology
, vol.4
, pp. 423
-
-
Bernales, S.1
McDonald, K.L.2
Walter, P.3
-
3
-
-
84856953003
-
Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
-
10.1016/j.cmet.2011.12.016
-
Coupe, B.; Y. Ishii, M.O. Dietrich, M. Komatsu, T.L. Horvath, and S.G. Bouret. 2012. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metabolism 15: 1-9.
-
(2012)
Cell Metabolism
, vol.15
, pp. 1-9
-
-
Coupe, B.1
Ishii, Y.2
Dietrich, M.O.3
Komatsu, M.4
Horvath, T.L.5
Bouret, S.G.6
-
4
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
18840363 10.1016/j.cmet.2008.08.009 1:CAS:528:DC%2BD1cXht1Cit77J
-
Ebato, C.; T. Uchida, M. Arakawa, M. Komatsu, T. Ueno, K. Komiya, K. Azuma, T. Hirose, K. Tanaka, E. Kominami, R. Kawamori, Y. Fujitani, and H. Watada. 2008. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metabolism 8: 325-332.
-
(2008)
Cell Metabolism
, vol.8
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
Komatsu, M.4
Ueno, T.5
Komiya, K.6
Azuma, K.7
Hirose, T.8
Tanaka, K.9
Kominami, E.10
Kawamori, R.11
Fujitani, Y.12
Watada, H.13
-
5
-
-
77950462712
-
Where do they come from? Insights from autophagosome formation
-
20188731 10.1016/j.febslet.2010.02.061 1:CAS:528:DC%2BC3cXjs12nu78%3D
-
Hamasaki, M.; and T. Yoshimor. 2010. Where do they come from? Insights from autophagosome formation. FEBS Letters 584: 1296-1301.
-
(2010)
FEBS Letters
, vol.584
, pp. 1296-1301
-
-
Hamasaki, M.1
Yoshimor, T.2
-
6
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
18840362 10.1016/j.cmet.2008.08.013 1:CAS:528:DC%2BD1cXht1Cit77O
-
Jung, H.S.; K.W. Chung, J.W. Kim, J. Kim, M. Komatsu, K. Tanaka, Y.H. Nguyen, T.M. Kang, K.H. Yoon, J.W. Kim, Y.T. Jeong, M.S. Han, M.K. Lee, K.W. Kim, J. Shin, and M.S. Lee. 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metabolism 8: 318-324.
-
(2008)
Cell Metabolism
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
Chung, K.W.2
Kim, J.W.3
Kim, J.4
Komatsu, M.5
Tanaka, K.6
Nguyen, Y.H.7
Kang, T.M.8
Yoon, K.H.9
Kim, J.W.10
Jeong, Y.T.11
Han, M.S.12
Lee, M.K.13
Kim, K.W.14
Shin, J.15
Lee, M.S.16
-
7
-
-
84863229947
-
Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
-
22249165 10.1038/embor.2011.260 1:CAS:528:DC%2BC38Xnt1OjtQ%3D%3D
-
Kaushik, S.; E. Arias, H. Kwon, N.M. Lopez, D. Athonvarangkull, S. Sahu, G.J. Schwartz, J.E. Pessin, and R. Singh. 2012. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Reports 13: 258-265.
-
(2012)
EMBO Reports
, vol.13
, pp. 258-265
-
-
Kaushik, S.1
Arias, E.2
Kwon, H.3
Lopez, N.M.4
Athonvarangkull, D.5
Sahu, S.6
Schwartz, G.J.7
Pessin, J.E.8
Singh, R.9
-
8
-
-
79960951346
-
Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
-
21803288 10.1016/j.cmet.2011.06.008 1:CAS:528:DC%2BC3MXpsFKitLc%3D
-
Kaushik, S.; J.A. Rodriguez-Navarro, E. Arias, R. Kiffin, S. Sahu, G.J. Schwartz, A.M. Cuervo, and R. Singh. 2011. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metabolism 14: 173-183.
-
(2011)
Cell Metabolism
, vol.14
, pp. 173-183
-
-
Kaushik, S.1
Rodriguez-Navarro, J.A.2
Arias, E.3
Kiffin, R.4
Sahu, S.5
Schwartz, G.J.6
Cuervo, A.M.7
Singh, R.8
-
9
-
-
65549142204
-
A role for ubiquitin in selective autophagy
-
19450525 10.1016/j.molcel.2009.04.026 1:CAS:528:DC%2BD1MXmtlGlt7c%3D
-
Kirkin, V.; D.G. Mcewan, I. Novak, and I. Dikic. 2009. A role for ubiquitin in selective autophagy. Molecular Cell 34: 259-269.
-
(2009)
Molecular Cell
, vol.34
, pp. 259-269
-
-
Kirkin, V.1
McEwan, D.G.2
Novak, I.3
Dikic, I.4
-
10
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
11099404 10.1126/science.290.5497.1717 1:CAS:528:DC%2BD3cXovVOitbw%3D
-
Klionsky, D.J.; and S.D. Emr. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717-1721.
-
(2000)
Science
, vol.290
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
11
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
18083104 10.1016/j.cell.2007.10.035 1:CAS:528:DC%2BD1cXksFGnsg%3D%3D
-
Komatsu, M.; S. Waguri, M. Koike, Y.S. Sou, T. Ueno, T. Hara, N. Mizushima, J. Iwata, J. Ezaki, S. Murata, J. Hamazaki, Y. Nishito, S. Iemura, T. Natsume, T. Yanagawa, J. Uwayama, E. Warabi, H. Yoshida, T. Ishii, A. Kobayashi, M. Yamamoto, Z. Yue, Y. Uchiyama, E. Kominami, and K. Tanaka. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.8
Ezaki, J.9
Murata, S.10
Hamazaki, J.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Yanagawa, T.15
Uwayama, J.16
Warabi, E.17
Yoshida, H.18
Ishii, T.19
Kobayashi, A.20
Yamamoto, M.21
Yue, Z.22
Uchiyama, Y.23
Kominami, E.24
Tanaka, K.25
more..
-
12
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
15866887 10.1083/jcb.200412022 1:CAS:528:DC%2BD2MXktFOjsLk%3D
-
Komatsu, M.; S. Waguri, T. Ueno, J. Iwata, S. Murata, I. Tanida, J. Ezaki, N. Mizushima, Y. Ohsumi, Y. Uchiyama, E. Kominami, K. Tanaka, and T. Chiba. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology 169: 425-434.
-
(2005)
Journal of Cell Biology
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
Kominami, E.11
Tanaka, K.12
Chiba, T.13
-
13
-
-
78649338141
-
Autophagy and the integrated stress response
-
20965422 10.1016/j.molcel.2010.09.023 1:CAS:528:DC%2BC3cXhtlCjtr%2FM
-
Kroemer, G.; G. Marino, and B. Levine. 2010. Autophagy and the integrated stress response. Molecular Cell 40: 280-293.
-
(2010)
Molecular Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
14
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
18191218 10.1016/j.cell.2007.12.018 1:CAS:528:DC%2BD1cXhtFehtb8%3D
-
Levine, B.; and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
15
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
15680329 10.1016/j.cell.2004.11.046 1:CAS:528:DC%2BD2MXht1emuro%3D
-
Lum, J.J.; D.E. Bauer, M. Kong, M.H. Harris, C. Li, T. Lindsten, and C.B. Thompson. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237-248.
-
(2005)
Cell
, vol.120
, pp. 237-248
-
-
Lum, J.J.1
Bauer, D.E.2
Kong, M.3
Harris, M.H.4
Li, C.5
Lindsten, T.6
Thompson, C.B.7
-
16
-
-
80052712323
-
Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway
-
21784844 10.1074/jbc.M111.254417 1:CAS:528:DC%2BC3MXhtFCju7vN
-
Meng, Q.; and D. Cai. 2011. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. Journal of Biological Chemistry 286: 32324-32332.
-
(2011)
Journal of Biological Chemistry
, vol.286
, pp. 32324-32332
-
-
Meng, Q.1
Cai, D.2
-
17
-
-
56349087407
-
Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions
-
19026441 10.1016/j.cell.2008.10.011 1:CAS:528:DC%2BD1cXhsV2jtrzN
-
Merksamer, P.I.; A. Trusina, and F.R. Papa. 2008. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135: 933-947.
-
(2008)
Cell
, vol.135
, pp. 933-947
-
-
Merksamer, P.I.1
Trusina, A.2
Papa, F.R.3
-
18
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
22078875 10.1016/j.cell.2011.10.026 1:CAS:528:DC%2BC3MXhsVKgsLnN
-
Mizushima, N.; and M. Komatsu. 2011. Autophagy: renovation of cells and tissues. Cell 147: 728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
19
-
-
53549098542
-
Lipidation of Atg8
-
18690009 1:CAS:528:DC%2BD1cXht12rurvE
-
Nakatogawa, H.; K. Oh-Oka, and Y. Ohsumi. 2008. Lipidation of Atg8. Autophagy 4: 911-913.
-
(2008)
Autophagy
, vol.4
, pp. 911-913
-
-
Nakatogawa, H.1
Oh-Oka, K.2
Ohsumi, Y.3
-
20
-
-
5644231992
-
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
-
15486293 10.1126/science.1103160
-
Ozcan, U.; Q. Cao, E. Yilmaz, A.H. Lee, N.N. Iwakoshi, E. Ozdelen, G. Tuncman, C. Gorgun, L.H. Glimcher, and G.S. Hotamisligil. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457-461.
-
(2004)
Science
, vol.306
, pp. 457-461
-
-
Ozcan, U.1
Cao, Q.2
Yilmaz, E.3
Lee, A.H.4
Iwakoshi, N.N.5
Ozdelen, E.6
Tuncman, G.7
Gorgun, C.8
Glimcher, L.H.9
Hotamisligil, G.S.10
-
21
-
-
77950523710
-
The regulatory subunits of PI3K, p85a and p85b, interact with XBP-1 and increase its nuclear translocation
-
20348926 10.1038/nm.2099 1:CAS:528:DC%2BC3cXjvFWjs7c%3D
-
Park, S.W.; Y. Zhou, J. Lee, A. Lu, C. Sun, J. Chung, K. Ueki, and U. Ozcan. 2010. The regulatory subunits of PI3K, p85a and p85b, interact with XBP-1 and increase its nuclear translocation. Nature Medicine 16: 429-437.
-
(2010)
Nature Medicine
, vol.16
, pp. 429-437
-
-
Park, S.W.1
Zhou, Y.2
Lee, J.3
Lu, A.4
Sun, C.5
Chung, J.6
Ueki, K.7
Ozcan, U.8
-
22
-
-
84856764175
-
Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice
-
22075916 10.1007/s00125-011-2350-y 1:CAS:528:DC%2BC3MXhs1yntbbI
-
Quan, W.; K.Y. Hur, Y. Lim, S.H. Oh, J.-C. Lee, H.C. Kim, G.-H. Kim, S.-H. Kim, H.L. Kim, M.-K. Lee, K.-W. Kim, J. Kim, M. Komatsu, and M.-S. Lee. 2012a. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55: 392-403.
-
(2012)
Diabetologia
, vol.55
, pp. 392-403
-
-
Quan, W.1
Hur, K.Y.2
Lim, Y.3
Oh, S.H.4
Lee, J.-C.5
Kim, H.C.6
Kim, G.-H.7
Kim, S.-H.8
Kim, H.L.9
Lee, M.-K.10
Kim, K.-W.11
Kim, J.12
Komatsu, M.13
Lee, M.-S.14
-
23
-
-
84859416906
-
Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response
-
22334718 10.1210/en.2011-1882 1:CAS:528:DC%2BC38XlsVSmsL8%3D
-
Quan, W.; H.-K. Kim, E.-Y. Moon, S.S. Kim, C.S. Choi, M. Komatsu, Y.T. Jeong, M.-K. Lee, K.-W. Kim, M.-S. Kim, and M.-S. Lee. 2012b. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153: 1817-1826.
-
(2012)
Endocrinology
, vol.153
, pp. 1817-1826
-
-
Quan, W.1
Kim, H.-K.2
Moon, E.-Y.3
Kim, S.S.4
Choi, C.S.5
Komatsu, M.6
Jeong, Y.T.7
Lee, M.-K.8
Kim, K.-W.9
Kim, M.-S.10
Lee, M.-S.11
-
24
-
-
22544444513
-
Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis
-
15980866 10.1038/nm1259 1:CAS:528:DC%2BD2MXmt1ajurw%3D
-
Scheuner, D.; D. Vander Mierde, B. Song, D. Flamez, J.W. Creemers, K. Tsukamoto, M. Ribick, F.C. Schuit, and R.J. Kaufman. 2005. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nature Medicine 11: 757-764.
-
(2005)
Nature Medicine
, vol.11
, pp. 757-764
-
-
Scheuner, D.1
Vander Mierde, D.2
Song, B.3
Flamez, D.4
Creemers, J.W.5
Tsukamoto, K.6
Ribick, M.7
Schuit, F.C.8
Kaufman, R.J.9
-
25
-
-
77950537400
-
A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response
-
20348923 10.1038/nm.2121 1:CAS:528:DC%2BC3cXjvFWjs70%3D
-
Winnay, J.N.; J. Boucher, M.A. Mori, K. Ueki, and C.R. Kahn. 2010. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nature Medicine 16: 438-445.
-
(2010)
Nature Medicine
, vol.16
, pp. 438-445
-
-
Winnay, J.N.1
Boucher, J.2
Mori, M.A.3
Ueki, K.4
Kahn, C.R.5
|