메뉴 건너뛰기




Volumn 38, Issue 7, 2013, Pages 337-344

Folding the proteome

Author keywords

Aggregation; Co translational folding; Kinetic stability; Molecular chaperones; Multidomain proteins; Protein folding in vivo

Indexed keywords

ASPARTATE SEMIALDEHYDE DEHYDROGENASE; CHEY PROTEIN; FUMARATE REDUCTASE; GREEN FLUORESCENT PROTEIN; LACTOSE PERMEASE; MEMBRANE PROTEIN; MYOGLOBIN; PHOSPHOGLYCERATE KINASE; PREALBUMIN; PROTEIN P22; PROTEOME; PURINE NUCLEOSIDE PHOSPHORYLASE; TOLC PROTEIN; UBIQUITIN; ESCHERICHIA COLI PROTEIN;

EID: 84879462025     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.05.001     Document Type: Review
Times cited : (85)

References (76)
  • 1
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen C.B. Principles that govern the folding of protein chains. Science 1973, 181:223-230.
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, C.B.1
  • 2
    • 0022555885 scopus 로고
    • Determination and analysis of urea and guanidine hydrochloride denaturation curves
    • Pace C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986, 131:266-280.
    • (1986) Methods Enzymol. , vol.131 , pp. 266-280
    • Pace, C.N.1
  • 3
    • 0032502839 scopus 로고    scopus 로고
    • Contact order, transition state placement and the refolding rates of single domain proteins
    • Plaxco K.W., et al. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 1998, 277:985-994.
    • (1998) J. Mol. Biol. , vol.277 , pp. 985-994
    • Plaxco, K.W.1
  • 4
    • 0031815749 scopus 로고    scopus 로고
    • How do small single-domain proteins fold?
    • Jackson S.E. How do small single-domain proteins fold?. Fold. Des. 1998, 3:R81-R91.
    • (1998) Fold. Des. , vol.3
    • Jackson, S.E.1
  • 5
    • 0037402639 scopus 로고    scopus 로고
    • Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics
    • Galzitskaya O.V., et al. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003, 51:162-166.
    • (2003) Proteins , vol.51 , pp. 162-166
    • Galzitskaya, O.V.1
  • 6
    • 46449120907 scopus 로고    scopus 로고
    • Predicting protein folding rates from geometric contact and amino acid sequence
    • Ouyang Z., Liang J. Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci. 2008, 17:1256-1263.
    • (2008) Protein Sci. , vol.17 , pp. 1256-1263
    • Ouyang, Z.1    Liang, J.2
  • 7
    • 77952730001 scopus 로고    scopus 로고
    • Insights into protein folding mechanisms from large scale analysis of mutational effects
    • Naganathan A.N., Munoz V. Insights into protein folding mechanisms from large scale analysis of mutational effects. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8611-8616.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 8611-8616
    • Naganathan, A.N.1    Munoz, V.2
  • 8
    • 77957242403 scopus 로고    scopus 로고
    • Proteome-level interplay between folding and aggregation propensities of proteins
    • Tartaglia G.G., Vendruscolo M. Proteome-level interplay between folding and aggregation propensities of proteins. J. Mol. Biol. 2010, 402:919-928.
    • (2010) J. Mol. Biol. , vol.402 , pp. 919-928
    • Tartaglia, G.G.1    Vendruscolo, M.2
  • 9
    • 80052449370 scopus 로고    scopus 로고
    • How do thermophilic proteins and proteomes withstand high temperature?
    • Sawle L., Ghosh K. How do thermophilic proteins and proteomes withstand high temperature?. Biophys. J. 2011, 101:217-227.
    • (2011) Biophys. J. , vol.101 , pp. 217-227
    • Sawle, L.1    Ghosh, K.2
  • 10
    • 80055086870 scopus 로고    scopus 로고
    • Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation
    • Fitzpatrick A.W., et al. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput. Biol. 2011, 7:e1002169.
    • (2011) PLoS Comput. Biol. , vol.7
    • Fitzpatrick, A.W.1
  • 11
    • 79251577383 scopus 로고    scopus 로고
    • Large proteins have a great tendency to aggregate but a low propensity to form amyloid fibrils
    • Ramshini H., et al. Large proteins have a great tendency to aggregate but a low propensity to form amyloid fibrils. PLoS ONE 2011, 6:e16075.
    • (2011) PLoS ONE , vol.6
    • Ramshini, H.1
  • 12
    • 84861763129 scopus 로고    scopus 로고
    • Proteome folding and aggregation
    • Vendruscolo M. Proteome folding and aggregation. Curr. Opin. Struct. Biol. 2012, 22:138-143.
    • (2012) Curr. Opin. Struct. Biol. , vol.22 , pp. 138-143
    • Vendruscolo, M.1
  • 13
    • 0030063114 scopus 로고    scopus 로고
    • Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates
    • King J., et al. Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J. 1996, 10:57-66.
    • (1996) FASEB J. , vol.10 , pp. 57-66
    • King, J.1
  • 14
    • 84869761071 scopus 로고    scopus 로고
    • The protein-folding problem, 50 years on
    • Dill K.A., MacCallum J.L. The protein-folding problem, 50 years on. Science 2012, 338:1042-1046.
    • (2012) Science , vol.338 , pp. 1042-1046
    • Dill, K.A.1    MacCallum, J.L.2
  • 15
    • 80055081145 scopus 로고    scopus 로고
    • How fast-folding proteins fold
    • Lindorff-Larsen K., et al. How fast-folding proteins fold. Science 2011, 334:517-520.
    • (2011) Science , vol.334 , pp. 517-520
    • Lindorff-Larsen, K.1
  • 16
    • 84862275382 scopus 로고    scopus 로고
    • A simple model predicts experimental folding rates and a hub-like topology
    • Lane T.J., Pande V.S. A simple model predicts experimental folding rates and a hub-like topology. J. Phys. Chem. B 2012, 116:6764-6774.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 6764-6774
    • Lane, T.J.1    Pande, V.S.2
  • 17
    • 79551682100 scopus 로고    scopus 로고
    • Taming the complexity of protein folding
    • Bowman G.R., et al. Taming the complexity of protein folding. Curr. Opin. Struct. Biol. 2011, 21:4-11.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 4-11
    • Bowman, G.R.1
  • 18
    • 79551684199 scopus 로고    scopus 로고
    • The folding of single domain proteins - have we reached a consensus?
    • Sosnick T.R., Barrick D. The folding of single domain proteins - have we reached a consensus?. Curr. Opin. Struct. Biol. 2011, 21:12-24.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 12-24
    • Sosnick, T.R.1    Barrick, D.2
  • 19
    • 0024417964 scopus 로고
    • The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure
    • Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct. Funct. Genet. 1989, 6:87-103.
    • (1989) Proteins Struct. Funct. Genet. , vol.6 , pp. 87-103
    • Kuwajima, K.1
  • 20
    • 0029124248 scopus 로고
    • Molten globule and protein folding
    • Ptitsyn O.B. Molten globule and protein folding. Adv. Protein Chem. 1995, 47:83-229.
    • (1995) Adv. Protein Chem. , vol.47 , pp. 83-229
    • Ptitsyn, O.B.1
  • 21
    • 49449100900 scopus 로고    scopus 로고
    • Problem solved* (*sort of)
    • Service R.F. Problem solved* (*sort of). Science 2008, 321:784-786.
    • (2008) Science , vol.321 , pp. 784-786
    • Service, R.F.1
  • 22
    • 84868152768 scopus 로고    scopus 로고
    • Chemical physics of protein folding
    • Wolynes P.G., et al. Chemical physics of protein folding. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17770-17771.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17770-17771
    • Wolynes, P.G.1
  • 23
    • 81055141521 scopus 로고    scopus 로고
    • Physical limits of cells and proteomes
    • Dill K.A., et al. Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17876-17882.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17876-17882
    • Dill, K.A.1
  • 24
    • 84876064638 scopus 로고    scopus 로고
    • Atomic-level description of ubiquitin folding
    • Piana S., et al. Atomic-level description of ubiquitin folding. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5915-5920.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5915-5920
    • Piana, S.1
  • 25
    • 0025040232 scopus 로고
    • De novo design, expression, and characterization of Felix: a 4-helix bundle protein of native-like sequence
    • Hecht M.H., et al. De novo design, expression, and characterization of Felix: a 4-helix bundle protein of native-like sequence. Science 1990, 249:884-891.
    • (1990) Science , vol.249 , pp. 884-891
    • Hecht, M.H.1
  • 26
    • 0345306764 scopus 로고    scopus 로고
    • Design of a novel globular protein fold with atomic-level accuracy
    • Kuhlman B., et al. Design of a novel globular protein fold with atomic-level accuracy. Science 2003, 302:1364-1368.
    • (2003) Science , vol.302 , pp. 1364-1368
    • Kuhlman, B.1
  • 27
    • 84861421529 scopus 로고    scopus 로고
    • The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug
    • Johnson S.M., et al. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 2012, 421:185-203.
    • (2012) J. Mol. Biol. , vol.421 , pp. 185-203
    • Johnson, S.M.1
  • 28
    • 84868611622 scopus 로고    scopus 로고
    • Principles for designing ideal protein structures
    • Koga N., et al. Principles for designing ideal protein structures. Nature 2012, 491:222-227.
    • (2012) Nature , vol.491 , pp. 222-227
    • Koga, N.1
  • 29
    • 22244468386 scopus 로고    scopus 로고
    • Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions
    • Willis M.S., et al. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci. 2005, 14:1818-1826.
    • (2005) Protein Sci. , vol.14 , pp. 1818-1826
    • Willis, M.S.1
  • 30
    • 33645471817 scopus 로고    scopus 로고
    • An automatable screen for the rapid identification of proteins amenable to refolding
    • Cowieson N.P., et al. An automatable screen for the rapid identification of proteins amenable to refolding. Proteomics 2006, 6:1750-1757.
    • (2006) Proteomics , vol.6 , pp. 1750-1757
    • Cowieson, N.P.1
  • 31
    • 4644285228 scopus 로고    scopus 로고
    • Protein folding in the cell: reshaping the folding funnel
    • Clark P.L. Protein folding in the cell: reshaping the folding funnel. Trends Biochem. Sci. 2004, 29:527-534.
    • (2004) Trends Biochem. Sci. , vol.29 , pp. 527-534
    • Clark, P.L.1
  • 32
    • 79551687316 scopus 로고    scopus 로고
    • Protein folding in the cell: challenges and progress
    • Gershenson A., Gierasch L.M. Protein folding in the cell: challenges and progress. Curr. Opin. Struct. Biol. 2011, 21:32-41.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 32-41
    • Gershenson, A.1    Gierasch, L.M.2
  • 33
    • 84874116604 scopus 로고    scopus 로고
    • Understanding pathogenic single-nucleotide polymorphisms in multidomain proteins - studies of isolated domains are not enough
    • Randles L.G., et al. Understanding pathogenic single-nucleotide polymorphisms in multidomain proteins - studies of isolated domains are not enough. FEBS J. 2013, 280:1018-1027.
    • (2013) FEBS J. , vol.280 , pp. 1018-1027
    • Randles, L.G.1
  • 34
    • 23744502246 scopus 로고    scopus 로고
    • Is there or isn't there? The case for (and against) residual structure in chemically denatured proteins
    • McCarney E.R., et al. Is there or isn't there? The case for (and against) residual structure in chemically denatured proteins. Crit. Rev. Biochem. Mol. Biol. 2005, 40:181-189.
    • (2005) Crit. Rev. Biochem. Mol. Biol. , vol.40 , pp. 181-189
    • McCarney, E.R.1
  • 35
    • 0347357617 scopus 로고    scopus 로고
    • Protein folding and misfolding
    • Dobson C.M. Protein folding and misfolding. Nature 2003, 426:884-890.
    • (2003) Nature , vol.426 , pp. 884-890
    • Dobson, C.M.1
  • 36
    • 0030874395 scopus 로고    scopus 로고
    • Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers
    • Lai Z., et al. Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers. Biochemistry 1997, 36:10230-10239.
    • (1997) Biochemistry , vol.36 , pp. 10230-10239
    • Lai, Z.1
  • 37
    • 0025821345 scopus 로고
    • In vitro folding pathway of phage P22 tailspike protein
    • Fuchs A., et al. In vitro folding pathway of phage P22 tailspike protein. Biochemistry 1991, 30:6598-6604.
    • (1991) Biochemistry , vol.30 , pp. 6598-6604
    • Fuchs, A.1
  • 38
    • 0031006611 scopus 로고    scopus 로고
    • Chromophore formation in green fluorescent protein
    • Reid B.G., Flynn G.C. Chromophore formation in green fluorescent protein. Biochemistry 1997, 36:6786-6791.
    • (1997) Biochemistry , vol.36 , pp. 6786-6791
    • Reid, B.G.1    Flynn, G.C.2
  • 39
    • 0037473750 scopus 로고    scopus 로고
    • Prevention of transthyretin amyloid disease by changing protein misfolding energetics
    • Hammarstrom P., et al. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 2003, 299:713-716.
    • (2003) Science , vol.299 , pp. 713-716
    • Hammarstrom, P.1
  • 40
    • 0025850262 scopus 로고
    • Global suppression of protein folding defects and inclusion body formation
    • Mitraki A., et al. Global suppression of protein folding defects and inclusion body formation. Science 1991, 253:54-58.
    • (1991) Science , vol.253 , pp. 54-58
    • Mitraki, A.1
  • 41
    • 77950659587 scopus 로고    scopus 로고
    • Cotranslational folding increases GFP folding yield
    • Ugrinov K.G., Clark P.L. Cotranslational folding increases GFP folding yield. Biophys. J. 2010, 98:1312-1320.
    • (2010) Biophys. J. , vol.98 , pp. 1312-1320
    • Ugrinov, K.G.1    Clark, P.L.2
  • 42
    • 36849036714 scopus 로고    scopus 로고
    • Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE
    • Xia K., et al. Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:17329-17334.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 17329-17334
    • Xia, K.1
  • 43
    • 34247180735 scopus 로고    scopus 로고
    • Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis
    • Park C., et al. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. J. Mol. Biol. 2007, 368:1426-1437.
    • (2007) J. Mol. Biol. , vol.368 , pp. 1426-1437
    • Park, C.1
  • 44
    • 33947501381 scopus 로고    scopus 로고
    • The folding and evolution of multidomain proteins
    • Han J.H., et al. The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 2007, 8:319-330.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 319-330
    • Han, J.H.1
  • 45
    • 34247239927 scopus 로고    scopus 로고
    • Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability
    • Young T.A., et al. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability. J. Mol. Biol. 2007, 368:1438-1447.
    • (2007) J. Mol. Biol. , vol.368 , pp. 1438-1447
    • Young, T.A.1
  • 46
    • 79959830883 scopus 로고    scopus 로고
    • Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins
    • Borgia M.B., et al. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 2011, 474:662-665.
    • (2011) Nature , vol.474 , pp. 662-665
    • Borgia, M.B.1
  • 47
    • 80055087629 scopus 로고    scopus 로고
    • The complex folding network of single calmodulin molecules
    • Stigler J., et al. The complex folding network of single calmodulin molecules. Science 2011, 334:512-516.
    • (2011) Science , vol.334 , pp. 512-516
    • Stigler, J.1
  • 48
    • 84875826727 scopus 로고    scopus 로고
    • Intrinsically disordered proteins undergo and assist folding transitions in the proteome
    • Kovacs D., et al. Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch. Biochem. Biophys. 2013, 531:80-89.
    • (2013) Arch. Biochem. Biophys. , vol.531 , pp. 80-89
    • Kovacs, D.1
  • 50
    • 77951298407 scopus 로고    scopus 로고
    • Models of macromolecular crowding effects and the need for quantitative comparisons with experiment
    • Elcock A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 2010, 20:196-206.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 196-206
    • Elcock, A.H.1
  • 51
    • 0028286471 scopus 로고
    • Kinetics versus thermodynamics in protein folding
    • Baker D., Agard D.A. Kinetics versus thermodynamics in protein folding. Biochemistry 1994, 33:7505-7509.
    • (1994) Biochemistry , vol.33 , pp. 7505-7509
    • Baker, D.1    Agard, D.A.2
  • 53
    • 0037122769 scopus 로고    scopus 로고
    • Energetic landscape of α-lytic protease optimizes longevity through kinetic stability
    • Jaswal S.S., et al. Energetic landscape of α-lytic protease optimizes longevity through kinetic stability. Nature 2002, 415:343-346.
    • (2002) Nature , vol.415 , pp. 343-346
    • Jaswal, S.S.1
  • 54
    • 1842420626 scopus 로고    scopus 로고
    • The Mad2 spindle checkpoint protein has two distinct natively folded states
    • Luo X., et al. The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat. Struct. Mol. Biol. 2004, 11:338-345.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 338-345
    • Luo, X.1
  • 55
    • 84864257340 scopus 로고    scopus 로고
    • An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor
    • Burmann B.M., et al. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 2012, 150:291-303.
    • (2012) Cell , vol.150 , pp. 291-303
    • Burmann, B.M.1
  • 56
    • 42449084477 scopus 로고    scopus 로고
    • Interconversion between two unrelated protein folds in the lymphotactin native state
    • Tuinstra R.L., et al. Interconversion between two unrelated protein folds in the lymphotactin native state. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:5057-5062.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 5057-5062
    • Tuinstra, R.L.1
  • 57
    • 0034924812 scopus 로고    scopus 로고
    • Folding of newly translated proteins in vivo: the role of molecular chaperones
    • Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 2001, 70:603-647.
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 603-647
    • Frydman, J.1
  • 58
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl F.U., et al. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475:324-332.
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1
  • 59
    • 0034646515 scopus 로고    scopus 로고
    • Getting newly synthesized proteins into shape
    • Bukau B., et al. Getting newly synthesized proteins into shape. Cell 2000, 101:119-122.
    • (2000) Cell , vol.101 , pp. 119-122
    • Bukau, B.1
  • 60
    • 77951974784 scopus 로고    scopus 로고
    • A systematic survey of in vivo obligate chaperonin-dependent substrates
    • Fujiwara K., et al. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 2010, 29:1552-1564.
    • (2010) EMBO J. , vol.29 , pp. 1552-1564
    • Fujiwara, K.1
  • 61
    • 84861139210 scopus 로고    scopus 로고
    • DnaK functions as a central hub in the E. coli chaperone network
    • Calloni G., et al. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep. 2012, 1:251-264.
    • (2012) Cell Rep. , vol.1 , pp. 251-264
    • Calloni, G.1
  • 62
    • 0033521588 scopus 로고    scopus 로고
    • In vivo newly translated polypeptides are sequestered in a protected folding environment
    • Thulasiraman V., et al. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 1999, 18:85-95.
    • (1999) EMBO J. , vol.18 , pp. 85-95
    • Thulasiraman, V.1
  • 63
    • 25444512161 scopus 로고    scopus 로고
    • Direct observation of the three-state folding of a single protein molecule
    • Cecconi C., et al. Direct observation of the three-state folding of a single protein molecule. Science 2005, 309:2057-2060.
    • (2005) Science , vol.309 , pp. 2057-2060
    • Cecconi, C.1
  • 64
    • 77953231020 scopus 로고    scopus 로고
    • The folding cooperativity of a protein is controlled by its chain topology
    • Shank E.A., et al. The folding cooperativity of a protein is controlled by its chain topology. Nature 2010, 465:637-640.
    • (2010) Nature , vol.465 , pp. 637-640
    • Shank, E.A.1
  • 65
    • 0034814860 scopus 로고    scopus 로고
    • Quantitative protein stability measurement in vivo
    • Ghaemmaghami S., Oas T.G. Quantitative protein stability measurement in vivo. Nat. Struct. Biol. 2001, 8:879-882.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 879-882
    • Ghaemmaghami, S.1    Oas, T.G.2
  • 66
    • 0347004717 scopus 로고    scopus 로고
    • Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
    • Ignatova Z., Gierasch L.M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:523-528.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 523-528
    • Ignatova, Z.1    Gierasch, L.M.2
  • 67
    • 77951643591 scopus 로고    scopus 로고
    • Protein folding stability and dynamics imaged in a living cell
    • Ebbinghaus S., et al. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 2010, 7:319-323.
    • (2010) Nat. Methods , vol.7 , pp. 319-323
    • Ebbinghaus, S.1
  • 68
    • 0032983520 scopus 로고    scopus 로고
    • Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase
    • Frydman J., et al. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat. Struct. Biol. 1999, 6:697-705.
    • (1999) Nat. Struct. Biol. , vol.6 , pp. 697-705
    • Frydman, J.1
  • 69
    • 52949153256 scopus 로고    scopus 로고
    • Cotranslational folding promotes β-helix formation and avoids aggregation in vivo
    • Evans M.S., et al. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo. J. Mol. Biol. 2008, 383:683-692.
    • (2008) J. Mol. Biol. , vol.383 , pp. 683-692
    • Evans, M.S.1
  • 70
    • 77950792003 scopus 로고    scopus 로고
    • Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
    • McGuffee S.R., Elcock A.H. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 2010, 6:e1000694.
    • (2010) PLoS Comput. Biol. , vol.6
    • McGuffee, S.R.1    Elcock, A.H.2
  • 71
    • 33746592161 scopus 로고    scopus 로고
    • Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome
    • Elcock A.H. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput. Biol. 2006, 2:e98.
    • (2006) PLoS Comput. Biol. , vol.2
    • Elcock, A.H.1
  • 72
    • 79951681719 scopus 로고    scopus 로고
    • Probing membrane protein unfolding with pulse proteolysis
    • Schlebach J.P., et al. Probing membrane protein unfolding with pulse proteolysis. J. Mol. Biol. 2011, 406:545-551.
    • (2011) J. Mol. Biol. , vol.406 , pp. 545-551
    • Schlebach, J.P.1
  • 73
    • 55549120907 scopus 로고    scopus 로고
    • β-Barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro
    • Burgess N.K., et al. β-Barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 2008, 283:26748-26758.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26748-26758
    • Burgess, N.K.1
  • 74
    • 78649878713 scopus 로고    scopus 로고
    • Unfolding free energy of a two-domain transmembrane sugar transport protein
    • Findlay H.E., et al. Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18451-18456.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 18451-18456
    • Findlay, H.E.1
  • 75
    • 60349125439 scopus 로고    scopus 로고
    • Folding scene investigation: membrane proteins
    • Booth P.J., Curnow P. Folding scene investigation: membrane proteins. Curr. Opin. Struct. Biol. 2009, 19:8-13.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 8-13
    • Booth, P.J.1    Curnow, P.2
  • 76
    • 0003166498 scopus 로고    scopus 로고
    • Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics
    • Chan H.S., Dill K.A. Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins Struct. Funct. Genet. 1998, 30:2-33.
    • (1998) Proteins Struct. Funct. Genet. , vol.30 , pp. 2-33
    • Chan, H.S.1    Dill, K.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.