-
1
-
-
0015859467
-
Principles that govern the folding of protein chains
-
Anfinsen C.B. Principles that govern the folding of protein chains. Science 1973, 181:223-230.
-
(1973)
Science
, vol.181
, pp. 223-230
-
-
Anfinsen, C.B.1
-
2
-
-
0022555885
-
Determination and analysis of urea and guanidine hydrochloride denaturation curves
-
Pace C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986, 131:266-280.
-
(1986)
Methods Enzymol.
, vol.131
, pp. 266-280
-
-
Pace, C.N.1
-
3
-
-
0032502839
-
Contact order, transition state placement and the refolding rates of single domain proteins
-
Plaxco K.W., et al. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 1998, 277:985-994.
-
(1998)
J. Mol. Biol.
, vol.277
, pp. 985-994
-
-
Plaxco, K.W.1
-
4
-
-
0031815749
-
How do small single-domain proteins fold?
-
Jackson S.E. How do small single-domain proteins fold?. Fold. Des. 1998, 3:R81-R91.
-
(1998)
Fold. Des.
, vol.3
-
-
Jackson, S.E.1
-
5
-
-
0037402639
-
Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics
-
Galzitskaya O.V., et al. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003, 51:162-166.
-
(2003)
Proteins
, vol.51
, pp. 162-166
-
-
Galzitskaya, O.V.1
-
6
-
-
46449120907
-
Predicting protein folding rates from geometric contact and amino acid sequence
-
Ouyang Z., Liang J. Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci. 2008, 17:1256-1263.
-
(2008)
Protein Sci.
, vol.17
, pp. 1256-1263
-
-
Ouyang, Z.1
Liang, J.2
-
7
-
-
77952730001
-
Insights into protein folding mechanisms from large scale analysis of mutational effects
-
Naganathan A.N., Munoz V. Insights into protein folding mechanisms from large scale analysis of mutational effects. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8611-8616.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 8611-8616
-
-
Naganathan, A.N.1
Munoz, V.2
-
8
-
-
77957242403
-
Proteome-level interplay between folding and aggregation propensities of proteins
-
Tartaglia G.G., Vendruscolo M. Proteome-level interplay between folding and aggregation propensities of proteins. J. Mol. Biol. 2010, 402:919-928.
-
(2010)
J. Mol. Biol.
, vol.402
, pp. 919-928
-
-
Tartaglia, G.G.1
Vendruscolo, M.2
-
9
-
-
80052449370
-
How do thermophilic proteins and proteomes withstand high temperature?
-
Sawle L., Ghosh K. How do thermophilic proteins and proteomes withstand high temperature?. Biophys. J. 2011, 101:217-227.
-
(2011)
Biophys. J.
, vol.101
, pp. 217-227
-
-
Sawle, L.1
Ghosh, K.2
-
10
-
-
80055086870
-
Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation
-
Fitzpatrick A.W., et al. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput. Biol. 2011, 7:e1002169.
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Fitzpatrick, A.W.1
-
11
-
-
79251577383
-
Large proteins have a great tendency to aggregate but a low propensity to form amyloid fibrils
-
Ramshini H., et al. Large proteins have a great tendency to aggregate but a low propensity to form amyloid fibrils. PLoS ONE 2011, 6:e16075.
-
(2011)
PLoS ONE
, vol.6
-
-
Ramshini, H.1
-
12
-
-
84861763129
-
Proteome folding and aggregation
-
Vendruscolo M. Proteome folding and aggregation. Curr. Opin. Struct. Biol. 2012, 22:138-143.
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 138-143
-
-
Vendruscolo, M.1
-
13
-
-
0030063114
-
Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates
-
King J., et al. Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J. 1996, 10:57-66.
-
(1996)
FASEB J.
, vol.10
, pp. 57-66
-
-
King, J.1
-
14
-
-
84869761071
-
The protein-folding problem, 50 years on
-
Dill K.A., MacCallum J.L. The protein-folding problem, 50 years on. Science 2012, 338:1042-1046.
-
(2012)
Science
, vol.338
, pp. 1042-1046
-
-
Dill, K.A.1
MacCallum, J.L.2
-
15
-
-
80055081145
-
How fast-folding proteins fold
-
Lindorff-Larsen K., et al. How fast-folding proteins fold. Science 2011, 334:517-520.
-
(2011)
Science
, vol.334
, pp. 517-520
-
-
Lindorff-Larsen, K.1
-
16
-
-
84862275382
-
A simple model predicts experimental folding rates and a hub-like topology
-
Lane T.J., Pande V.S. A simple model predicts experimental folding rates and a hub-like topology. J. Phys. Chem. B 2012, 116:6764-6774.
-
(2012)
J. Phys. Chem. B
, vol.116
, pp. 6764-6774
-
-
Lane, T.J.1
Pande, V.S.2
-
17
-
-
79551682100
-
Taming the complexity of protein folding
-
Bowman G.R., et al. Taming the complexity of protein folding. Curr. Opin. Struct. Biol. 2011, 21:4-11.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 4-11
-
-
Bowman, G.R.1
-
18
-
-
79551684199
-
The folding of single domain proteins - have we reached a consensus?
-
Sosnick T.R., Barrick D. The folding of single domain proteins - have we reached a consensus?. Curr. Opin. Struct. Biol. 2011, 21:12-24.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 12-24
-
-
Sosnick, T.R.1
Barrick, D.2
-
19
-
-
0024417964
-
The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure
-
Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct. Funct. Genet. 1989, 6:87-103.
-
(1989)
Proteins Struct. Funct. Genet.
, vol.6
, pp. 87-103
-
-
Kuwajima, K.1
-
20
-
-
0029124248
-
Molten globule and protein folding
-
Ptitsyn O.B. Molten globule and protein folding. Adv. Protein Chem. 1995, 47:83-229.
-
(1995)
Adv. Protein Chem.
, vol.47
, pp. 83-229
-
-
Ptitsyn, O.B.1
-
21
-
-
49449100900
-
Problem solved* (*sort of)
-
Service R.F. Problem solved* (*sort of). Science 2008, 321:784-786.
-
(2008)
Science
, vol.321
, pp. 784-786
-
-
Service, R.F.1
-
22
-
-
84868152768
-
Chemical physics of protein folding
-
Wolynes P.G., et al. Chemical physics of protein folding. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17770-17771.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17770-17771
-
-
Wolynes, P.G.1
-
23
-
-
81055141521
-
Physical limits of cells and proteomes
-
Dill K.A., et al. Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17876-17882.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 17876-17882
-
-
Dill, K.A.1
-
24
-
-
84876064638
-
Atomic-level description of ubiquitin folding
-
Piana S., et al. Atomic-level description of ubiquitin folding. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5915-5920.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5915-5920
-
-
Piana, S.1
-
25
-
-
0025040232
-
De novo design, expression, and characterization of Felix: a 4-helix bundle protein of native-like sequence
-
Hecht M.H., et al. De novo design, expression, and characterization of Felix: a 4-helix bundle protein of native-like sequence. Science 1990, 249:884-891.
-
(1990)
Science
, vol.249
, pp. 884-891
-
-
Hecht, M.H.1
-
26
-
-
0345306764
-
Design of a novel globular protein fold with atomic-level accuracy
-
Kuhlman B., et al. Design of a novel globular protein fold with atomic-level accuracy. Science 2003, 302:1364-1368.
-
(2003)
Science
, vol.302
, pp. 1364-1368
-
-
Kuhlman, B.1
-
27
-
-
84861421529
-
The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug
-
Johnson S.M., et al. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 2012, 421:185-203.
-
(2012)
J. Mol. Biol.
, vol.421
, pp. 185-203
-
-
Johnson, S.M.1
-
28
-
-
84868611622
-
Principles for designing ideal protein structures
-
Koga N., et al. Principles for designing ideal protein structures. Nature 2012, 491:222-227.
-
(2012)
Nature
, vol.491
, pp. 222-227
-
-
Koga, N.1
-
29
-
-
22244468386
-
Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions
-
Willis M.S., et al. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci. 2005, 14:1818-1826.
-
(2005)
Protein Sci.
, vol.14
, pp. 1818-1826
-
-
Willis, M.S.1
-
30
-
-
33645471817
-
An automatable screen for the rapid identification of proteins amenable to refolding
-
Cowieson N.P., et al. An automatable screen for the rapid identification of proteins amenable to refolding. Proteomics 2006, 6:1750-1757.
-
(2006)
Proteomics
, vol.6
, pp. 1750-1757
-
-
Cowieson, N.P.1
-
31
-
-
4644285228
-
Protein folding in the cell: reshaping the folding funnel
-
Clark P.L. Protein folding in the cell: reshaping the folding funnel. Trends Biochem. Sci. 2004, 29:527-534.
-
(2004)
Trends Biochem. Sci.
, vol.29
, pp. 527-534
-
-
Clark, P.L.1
-
32
-
-
79551687316
-
Protein folding in the cell: challenges and progress
-
Gershenson A., Gierasch L.M. Protein folding in the cell: challenges and progress. Curr. Opin. Struct. Biol. 2011, 21:32-41.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 32-41
-
-
Gershenson, A.1
Gierasch, L.M.2
-
33
-
-
84874116604
-
Understanding pathogenic single-nucleotide polymorphisms in multidomain proteins - studies of isolated domains are not enough
-
Randles L.G., et al. Understanding pathogenic single-nucleotide polymorphisms in multidomain proteins - studies of isolated domains are not enough. FEBS J. 2013, 280:1018-1027.
-
(2013)
FEBS J.
, vol.280
, pp. 1018-1027
-
-
Randles, L.G.1
-
34
-
-
23744502246
-
Is there or isn't there? The case for (and against) residual structure in chemically denatured proteins
-
McCarney E.R., et al. Is there or isn't there? The case for (and against) residual structure in chemically denatured proteins. Crit. Rev. Biochem. Mol. Biol. 2005, 40:181-189.
-
(2005)
Crit. Rev. Biochem. Mol. Biol.
, vol.40
, pp. 181-189
-
-
McCarney, E.R.1
-
35
-
-
0347357617
-
Protein folding and misfolding
-
Dobson C.M. Protein folding and misfolding. Nature 2003, 426:884-890.
-
(2003)
Nature
, vol.426
, pp. 884-890
-
-
Dobson, C.M.1
-
36
-
-
0030874395
-
Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers
-
Lai Z., et al. Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers. Biochemistry 1997, 36:10230-10239.
-
(1997)
Biochemistry
, vol.36
, pp. 10230-10239
-
-
Lai, Z.1
-
37
-
-
0025821345
-
In vitro folding pathway of phage P22 tailspike protein
-
Fuchs A., et al. In vitro folding pathway of phage P22 tailspike protein. Biochemistry 1991, 30:6598-6604.
-
(1991)
Biochemistry
, vol.30
, pp. 6598-6604
-
-
Fuchs, A.1
-
38
-
-
0031006611
-
Chromophore formation in green fluorescent protein
-
Reid B.G., Flynn G.C. Chromophore formation in green fluorescent protein. Biochemistry 1997, 36:6786-6791.
-
(1997)
Biochemistry
, vol.36
, pp. 6786-6791
-
-
Reid, B.G.1
Flynn, G.C.2
-
39
-
-
0037473750
-
Prevention of transthyretin amyloid disease by changing protein misfolding energetics
-
Hammarstrom P., et al. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 2003, 299:713-716.
-
(2003)
Science
, vol.299
, pp. 713-716
-
-
Hammarstrom, P.1
-
40
-
-
0025850262
-
Global suppression of protein folding defects and inclusion body formation
-
Mitraki A., et al. Global suppression of protein folding defects and inclusion body formation. Science 1991, 253:54-58.
-
(1991)
Science
, vol.253
, pp. 54-58
-
-
Mitraki, A.1
-
41
-
-
77950659587
-
Cotranslational folding increases GFP folding yield
-
Ugrinov K.G., Clark P.L. Cotranslational folding increases GFP folding yield. Biophys. J. 2010, 98:1312-1320.
-
(2010)
Biophys. J.
, vol.98
, pp. 1312-1320
-
-
Ugrinov, K.G.1
Clark, P.L.2
-
42
-
-
36849036714
-
Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE
-
Xia K., et al. Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:17329-17334.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 17329-17334
-
-
Xia, K.1
-
43
-
-
34247180735
-
Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis
-
Park C., et al. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. J. Mol. Biol. 2007, 368:1426-1437.
-
(2007)
J. Mol. Biol.
, vol.368
, pp. 1426-1437
-
-
Park, C.1
-
44
-
-
33947501381
-
The folding and evolution of multidomain proteins
-
Han J.H., et al. The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 2007, 8:319-330.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 319-330
-
-
Han, J.H.1
-
45
-
-
34247239927
-
Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability
-
Young T.A., et al. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability. J. Mol. Biol. 2007, 368:1438-1447.
-
(2007)
J. Mol. Biol.
, vol.368
, pp. 1438-1447
-
-
Young, T.A.1
-
46
-
-
79959830883
-
Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins
-
Borgia M.B., et al. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 2011, 474:662-665.
-
(2011)
Nature
, vol.474
, pp. 662-665
-
-
Borgia, M.B.1
-
47
-
-
80055087629
-
The complex folding network of single calmodulin molecules
-
Stigler J., et al. The complex folding network of single calmodulin molecules. Science 2011, 334:512-516.
-
(2011)
Science
, vol.334
, pp. 512-516
-
-
Stigler, J.1
-
48
-
-
84875826727
-
Intrinsically disordered proteins undergo and assist folding transitions in the proteome
-
Kovacs D., et al. Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch. Biochem. Biophys. 2013, 531:80-89.
-
(2013)
Arch. Biochem. Biophys.
, vol.531
, pp. 80-89
-
-
Kovacs, D.1
-
50
-
-
77951298407
-
Models of macromolecular crowding effects and the need for quantitative comparisons with experiment
-
Elcock A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 2010, 20:196-206.
-
(2010)
Curr. Opin. Struct. Biol.
, vol.20
, pp. 196-206
-
-
Elcock, A.H.1
-
51
-
-
0028286471
-
Kinetics versus thermodynamics in protein folding
-
Baker D., Agard D.A. Kinetics versus thermodynamics in protein folding. Biochemistry 1994, 33:7505-7509.
-
(1994)
Biochemistry
, vol.33
, pp. 7505-7509
-
-
Baker, D.1
Agard, D.A.2
-
53
-
-
0037122769
-
Energetic landscape of α-lytic protease optimizes longevity through kinetic stability
-
Jaswal S.S., et al. Energetic landscape of α-lytic protease optimizes longevity through kinetic stability. Nature 2002, 415:343-346.
-
(2002)
Nature
, vol.415
, pp. 343-346
-
-
Jaswal, S.S.1
-
54
-
-
1842420626
-
The Mad2 spindle checkpoint protein has two distinct natively folded states
-
Luo X., et al. The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat. Struct. Mol. Biol. 2004, 11:338-345.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 338-345
-
-
Luo, X.1
-
55
-
-
84864257340
-
An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor
-
Burmann B.M., et al. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 2012, 150:291-303.
-
(2012)
Cell
, vol.150
, pp. 291-303
-
-
Burmann, B.M.1
-
56
-
-
42449084477
-
Interconversion between two unrelated protein folds in the lymphotactin native state
-
Tuinstra R.L., et al. Interconversion between two unrelated protein folds in the lymphotactin native state. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:5057-5062.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 5057-5062
-
-
Tuinstra, R.L.1
-
57
-
-
0034924812
-
Folding of newly translated proteins in vivo: the role of molecular chaperones
-
Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 2001, 70:603-647.
-
(2001)
Annu. Rev. Biochem.
, vol.70
, pp. 603-647
-
-
Frydman, J.1
-
58
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl F.U., et al. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475:324-332.
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
-
59
-
-
0034646515
-
Getting newly synthesized proteins into shape
-
Bukau B., et al. Getting newly synthesized proteins into shape. Cell 2000, 101:119-122.
-
(2000)
Cell
, vol.101
, pp. 119-122
-
-
Bukau, B.1
-
60
-
-
77951974784
-
A systematic survey of in vivo obligate chaperonin-dependent substrates
-
Fujiwara K., et al. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 2010, 29:1552-1564.
-
(2010)
EMBO J.
, vol.29
, pp. 1552-1564
-
-
Fujiwara, K.1
-
61
-
-
84861139210
-
DnaK functions as a central hub in the E. coli chaperone network
-
Calloni G., et al. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep. 2012, 1:251-264.
-
(2012)
Cell Rep.
, vol.1
, pp. 251-264
-
-
Calloni, G.1
-
62
-
-
0033521588
-
In vivo newly translated polypeptides are sequestered in a protected folding environment
-
Thulasiraman V., et al. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 1999, 18:85-95.
-
(1999)
EMBO J.
, vol.18
, pp. 85-95
-
-
Thulasiraman, V.1
-
63
-
-
25444512161
-
Direct observation of the three-state folding of a single protein molecule
-
Cecconi C., et al. Direct observation of the three-state folding of a single protein molecule. Science 2005, 309:2057-2060.
-
(2005)
Science
, vol.309
, pp. 2057-2060
-
-
Cecconi, C.1
-
64
-
-
77953231020
-
The folding cooperativity of a protein is controlled by its chain topology
-
Shank E.A., et al. The folding cooperativity of a protein is controlled by its chain topology. Nature 2010, 465:637-640.
-
(2010)
Nature
, vol.465
, pp. 637-640
-
-
Shank, E.A.1
-
65
-
-
0034814860
-
Quantitative protein stability measurement in vivo
-
Ghaemmaghami S., Oas T.G. Quantitative protein stability measurement in vivo. Nat. Struct. Biol. 2001, 8:879-882.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 879-882
-
-
Ghaemmaghami, S.1
Oas, T.G.2
-
66
-
-
0347004717
-
Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
-
Ignatova Z., Gierasch L.M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:523-528.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 523-528
-
-
Ignatova, Z.1
Gierasch, L.M.2
-
67
-
-
77951643591
-
Protein folding stability and dynamics imaged in a living cell
-
Ebbinghaus S., et al. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 2010, 7:319-323.
-
(2010)
Nat. Methods
, vol.7
, pp. 319-323
-
-
Ebbinghaus, S.1
-
68
-
-
0032983520
-
Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase
-
Frydman J., et al. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat. Struct. Biol. 1999, 6:697-705.
-
(1999)
Nat. Struct. Biol.
, vol.6
, pp. 697-705
-
-
Frydman, J.1
-
69
-
-
52949153256
-
Cotranslational folding promotes β-helix formation and avoids aggregation in vivo
-
Evans M.S., et al. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo. J. Mol. Biol. 2008, 383:683-692.
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 683-692
-
-
Evans, M.S.1
-
70
-
-
77950792003
-
Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
-
McGuffee S.R., Elcock A.H. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 2010, 6:e1000694.
-
(2010)
PLoS Comput. Biol.
, vol.6
-
-
McGuffee, S.R.1
Elcock, A.H.2
-
71
-
-
33746592161
-
Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome
-
Elcock A.H. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput. Biol. 2006, 2:e98.
-
(2006)
PLoS Comput. Biol.
, vol.2
-
-
Elcock, A.H.1
-
72
-
-
79951681719
-
Probing membrane protein unfolding with pulse proteolysis
-
Schlebach J.P., et al. Probing membrane protein unfolding with pulse proteolysis. J. Mol. Biol. 2011, 406:545-551.
-
(2011)
J. Mol. Biol.
, vol.406
, pp. 545-551
-
-
Schlebach, J.P.1
-
73
-
-
55549120907
-
β-Barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro
-
Burgess N.K., et al. β-Barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 2008, 283:26748-26758.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 26748-26758
-
-
Burgess, N.K.1
-
74
-
-
78649878713
-
Unfolding free energy of a two-domain transmembrane sugar transport protein
-
Findlay H.E., et al. Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18451-18456.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 18451-18456
-
-
Findlay, H.E.1
-
75
-
-
60349125439
-
Folding scene investigation: membrane proteins
-
Booth P.J., Curnow P. Folding scene investigation: membrane proteins. Curr. Opin. Struct. Biol. 2009, 19:8-13.
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 8-13
-
-
Booth, P.J.1
Curnow, P.2
-
76
-
-
0003166498
-
Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics
-
Chan H.S., Dill K.A. Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins Struct. Funct. Genet. 1998, 30:2-33.
-
(1998)
Proteins Struct. Funct. Genet.
, vol.30
, pp. 2-33
-
-
Chan, H.S.1
Dill, K.A.2
|