메뉴 건너뛰기




Volumn 14, Issue 3, 2013, Pages 586-599

Sparse time series chain graphical models for reconstructing genetic networks

Author keywords

Chain graphical mode; Dynamic network; Gene expression; High dimensional data; L1 penalty; Model selection; Penalized likelihood; SCAD penalty; Vector autoregressive model

Indexed keywords

ANIMAL; ARABIDOPSIS; ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; BIOSTATISTICS; CHAIN GRAPHICAL MODE; COMPUTER SIMULATION; DYNAMIC NETWORK; FEMALE; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETICS; HIGH-DIMENSIONAL DATA; L1 PENALTY; METABOLISM; MODEL SELECTION; MOUSE; PENALIZED LIKELIHOOD; SCAD PENALTY; STATISTICAL MODEL; STATISTICS; UDDER; VECTOR AUTOREGRESSIVE MODEL;

EID: 84879073822     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxt005     Document Type: Article
Times cited : (80)

References (27)
  • 1
    • 33644774771 scopus 로고    scopus 로고
    • A graphical chain model for inferring regulatory system networks from gene expression profiles
    • ABURATANI, S., SAITO, S., TOH, H. AND HORIMOTO, K. (2006). A graphical chain model for inferring regulatory system networks from gene expression profiles. Statistical Methodology 3, 17-28
    • (2006) Statistical Methodology , vol.3 , pp. 17-28
    • Aburatani, S.1    Saito, S.2    Toh, H.3    Horimoto, K.4
  • 2
    • 36048952642 scopus 로고    scopus 로고
    • Gene expression profiling of early involuting mammary gland reveals novel genes potentially relevant to human breast cancer anne blanchard, robert shiu 2, stephanie booth 4, garrett sorensen 4, nicole decorby1, andreea nistor1, paul wong 5, etienne leygue3 and yvonne myal
    • BLANCHARD, A. (2007). Gene expression profiling of early involuting mammary gland reveals novel genes potentially relevant to human breast cancer anne blanchard, robert shiu 2, stephanie booth 4, garrett sorensen 4, nicole decorby1, andreea nistor1, paul wong 5, etienne leygue3 and yvonne myal. Frontiers in Bioscience 12, 2221-2232
    • (2007) Frontiers in Bioscience , vol.12 , pp. 2221-2232
    • Blanchard, A.1
  • 3
    • 79960110811 scopus 로고    scopus 로고
    • A constrained -1 minimization approach to sparse precision matrix estimation
    • CAI, T., LIU, W. AND LUO, X. (2011). A constrained -1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association 106, 594-607
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 6
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive lasso and scad penalties
    • FAN, J., FENG, Y. AND WU, Y. (2009). Network exploration via the adaptive lasso and scad penalties. The Annals of Applied Statistics 3, 521
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 521
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • FAN, J. AND LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • FRIEDMAN, J., HASTIE, T. AND TIBSHIRANI, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-441
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 77956297196 scopus 로고    scopus 로고
    • Latent ancestral graph of structure vector autoregressive models
    • GAO, W. AND TIAN, Z. (2010). Latent ancestral graph of structure vector autoregressive models. Journal of Systems Engineering and Electronics 21, 233-238
    • (2010) Journal of Systems Engineering and Electronics , vol.21 , pp. 233-238
    • Gao, W.1    Tian, Z.2
  • 10
    • 79951965650 scopus 로고    scopus 로고
    • Improvements in the reconstruction of time-varying gene regulatory networks: Dynamic programming and regularization by information sharing among genes
    • GRZEGORCZYK, M. AND HUSMEIER, D. (2011a). Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 27, 693-699
    • (2011) Bioinformatics , vol.27 , pp. 693-699
    • Grzegorczyk, M.1    Husmeier, D.2
  • 11
    • 79958861169 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks for continuous data
    • GRZEGORCZYK, M. AND HUSMEIER, D. (2011b). Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning 83, 355-419
    • (2011) Machine Learning , vol.83 , pp. 355-419
    • Grzegorczyk, M.1    Husmeier, D.2
  • 12
    • 51749112494 scopus 로고    scopus 로고
    • Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    • GRZEGORCZYK, M.,HUSMEIER, D.,EDWARDS, K. D.,GHAZAL, P. ANDMILLAR, A. J. (2008).Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics 24, 2071-2078
    • (2008) Bioinformatics , vol.24 , pp. 2071-2078
    • Grzegorczyk, M.1    Husmeier, D.2    Edwards, K.D.3    Ghazal, P.4    Andmillar, A.J.5
  • 13
    • 74549190016 scopus 로고    scopus 로고
    • The analysis of Arabidopsis thaliana circadian network based on non-stationary DBNS approach with flexible time lag choosing mechanism
    • Washington DC
    • JIA, Y. AND HUAN, J. (2009). The analysis of Arabidopsis thaliana circadian network based on non-stationary DBNS approach with flexible time lag choosing mechanism. In: Bioinformatics and Biomedicine, 2009. BIBM'09. IEEE International Conference on IEEE, Washington DC. pp. 178-181
    • (2009) Bioinformatics and Biomedicine 2009. BIBM'09. IEEE International Conference on IEEE , pp. 178-181
    • Jia, Y.1    Huan, J.2
  • 14
    • 0031023049 scopus 로고    scopus 로고
    • The key role of 17?-hydroxysteroid dehydrogenases in sex steroid biology
    • LABRIE, F., LIN, S. X., CLAUDE, L., SIMARD, J., BRETON, R., B́ELANGER, A. and others. (1997). The key role of 17?-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62, 148-158
    • (1997) Steroids , vol.62 , pp. 148-158
    • Labrie, F.1    Lin, S.X.2    Claude, L.3    Simard, J.4    Breton, R.5    Bélanger, A.6
  • 15
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • LAM, C. AND FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Annals of Statistics 37, 4254
    • (2009) Annals of Statistics , vol.37 , pp. 4254
    • Lam, C.1    Fan, J.2
  • 16
    • 44649104433 scopus 로고    scopus 로고
    • Circadian clock function in Arabidopsis thaliana: Time beyond transcription
    • ḾAS, P. (2008). Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends in Cell Biology 18, 273-281
    • (2008) Trends in Cell Biology , vol.18 , pp. 273-281
    • Más, P.1
  • 17
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MEINSHAUSEN, N. AND BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics 34, 1436-1462
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 18
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
    • OPGEN-RHEIN, R. AND STRIMMER, K. (2007). Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(Suppl 2), S3.
    • (2007) BMC Bioinformatics , vol.8 , Issue.2 SUPPL.
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 24
    • 70549083891 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using time-series data: A survey
    • SIMA, C.,HUA, J. AND JUNG, S. (2009). Inference of gene regulatory networks using time-series data: a survey. Current Genomics 10, 416
    • (2009) Current Genomics , vol.10 , pp. 416
    • Sima, C.1    Hua, J.2    Jung, S.3
  • 26
    • 84860352230 scopus 로고    scopus 로고
    • A sparse conditional gaussian graphical model for analysis of genetical genomics data
    • YIN, J. AND LI, H. (2011). A sparse conditional gaussian graphical model for analysis of genetical genomics data. The Annals of Applied Statistics 5, 2630-2650
    • (2011) The Annals of Applied Statistics , vol.5 , pp. 2630-2650
    • Yin, J.1    Li, H.2
  • 27
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • ZOU, H. AND LI, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 36, 1509
    • (2008) Annals of Statistics , vol.36 , pp. 1509
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.