메뉴 건너뛰기




Volumn 5, Issue 4, 2011, Pages 2630-2650

A sparse conditional Gaussian graphical model for analysis of genetical genomics data

(2)  Yin, Jianxin a   Li, Hongzhe a  

a NONE

Author keywords

eQTL; Gaussian graphical model; Genetic networks; Regularization; Seemingly unrelated regression

Indexed keywords


EID: 84860352230     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/11-AOAS494     Document Type: Article
Times cited : (155)

References (33)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., El Ghaoui, L. and d'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9 485-516.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 2
    • 22144454660 scopus 로고    scopus 로고
    • Genetical genomics analysis of a yeast segregant population for transcription network inference
    • Bing, N. and Hoeschele, I. (2005). Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170 533-542.
    • (2005) Genetics , vol.170 , pp. 533-542
    • Bing, N.1    Hoeschele, I.2
  • 3
    • 0036843965 scopus 로고    scopus 로고
    • Gene networks: How to put the function in genomics
    • Brazhnik, P., de la Fuente, A. and Mendes, P. (2002). Gene networks: How to put the function in genomics. Trends Biotechnol. 20 467-472.
    • (2002) Trends Biotechnol , vol.20 , pp. 467-472
    • Brazhnik, P.1    de la Fuente, A.2    Mendes, P.3
  • 4
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of genetic complexity across 5,700 gene expression traits in yeast
    • Brem, R. B. and Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of National Academy of Sciences 102 1572-1577.
    • (2005) Proceedings of National Academy of Sciences , vol.102 , pp. 1572-1577
    • Brem, R.B.1    Kruglyak, L.2
  • 5
    • 84870284276 scopus 로고    scopus 로고
    • Causal Graphical Models in Systems Genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes
    • Chaibub Neto, E., Keller, M. P., Attie, A. D. and Yandell, B. S. (2010). Causal Graphical Models in Systems Genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann. Appl. Statist. 4 320-339.
    • (2010) Ann. Appl. Statist , vol.4 , pp. 320-339
    • Chaibub Neto, E.1    Keller, M.P.2    Attie, A.D.3    Yandell, B.S.4
  • 6
    • 42949144555 scopus 로고    scopus 로고
    • Harnessing naturally randomized transcription to infer regulatory relationships among genes
    • Chen, L. S., Emmert-Streib, F. and Storey, J. D. (2007). Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol. 8 R219.
    • (2007) Genome Biol , vol.8
    • Chen, L.S.1    Emmert-Streib, F.2    Storey, J.D.3
  • 7
    • 0036899513 scopus 로고    scopus 로고
    • The genetics of variation in gene expression
    • Cheung, V. G. and Spielman, R. S. (2002). The genetics of variation in gene expression. Nat. Genet. 32 522-525.
    • (2002) Nat. Genet , vol.32 , pp. 522-525
    • Cheung, V.G.1    Spielman, R.S.2
  • 8
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • (electronic)
    • Chickering, D. M., Heckerman, D. and Meek, C. (2004). Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5 1287-1330 (electronic).
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 9
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster, A. P. (1972). Covariance selection. Biometrics 28 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 10
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive lasso and SCAD penalties
    • Fan, J., Feng, Y. and Wu, Y. (2009). Network exploration via the adaptive lasso and SCAD penalties. Ann. Appl. Stat. 3 521-541.
    • (2009) Ann. Appl. Stat , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 11
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38 D355-D360.
    • (2010) Nucleic Acids Res , vol.38
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 13
    • 33745220961 scopus 로고    scopus 로고
    • A review of statistical methods for expression quantitative trait loci mapping
    • Kendziorski, C. and Wang, P. (2003). A review of statistical methods for expression quantitative trait loci mapping. Mammalian Genome 17 509-517.
    • (2003) Mammalian Genome , vol.17 , pp. 509-517
    • Kendziorski, C.1    Wang, P.2
  • 14
    • 33645068841 scopus 로고    scopus 로고
    • Statistical methods for expression quantitative trait loci (eQTL) mapping
    • Kendziorski, C. M., Chen, M., Yuan, M., Lan, H. and Attie, A. D. (2006). Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62 19-27.
    • (2006) Biometrics , vol.62 , pp. 19-27
    • Kendziorski, C.M.1    Chen, M.2    Yuan, M.3    Lan, H.4    Attie, A.D.5
  • 16
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254-4278.
    • (2009) Ann. Statist , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 17
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li, H. and Gui, J. (2006). Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 7 302-317.
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 18
    • 45149096374 scopus 로고    scopus 로고
    • Gene network inference via structural equation modeling in genetical genomics experiments
    • Liu, B., De La Feunte, A. and Hoeschele, I. (2008). Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 178 1763-1776.
    • (2008) Genetics , vol.178 , pp. 1763-1776
    • Liu, B.1    De La Feunte, A.2    Hoeschele, I.3
  • 19
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 20
    • 84870284276 scopus 로고    scopus 로고
    • Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes
    • Neto, E. C., Keller, M. P., Attie, A. D. and Yandell, B. S. (2010). Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann. Appl. Stat. 4 320-339.
    • (2010) Ann. Appl. Stat , vol.4 , pp. 320-339
    • Neto, E.C.1    Keller, M.P.2    Attie, A.D.3    Yandell, B.S.4
  • 21
    • 66549116888 scopus 로고    scopus 로고
    • Partial correlation estimation by joint sparse regression models
    • Peng, J., Zhou, N. and Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. J. Amer. Statist. Assoc. 104 735-746.
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 735-746
    • Peng, J.1    Zhou, N.2    Zhu, J.3
  • 22
    • 79952797027 scopus 로고    scopus 로고
    • Sparse multivariate regression with covariance estimation
    • Rothman, A. J., Levina, E. and Zhu, J. (2010). Sparse multivariate regression with covariance estimation. J. Comput. Graph. Statist. 19 947-962.
    • (2010) J. Comput. Graph. Statist , vol.19 , pp. 947-962
    • Rothman, A.J.1    Levina, E.2    Zhu, J.3
  • 25
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: Understanding cancer using microarrays
    • Segal, E., Friedman, N., Kaminski, N., Regev, A. and Koller, D. (2005). From signatures to models: Understanding cancer using microarrays. Nat. Genet. 37 S38-S45.
    • (2005) Nat. Genet , vol.37
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 28
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • Wang, H., Li, R. and Tsai, C.-L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94 553-568.
    • (2007) Biometrika , vol.94 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.-L.3
  • 31
    • 84946357749 scopus 로고
    • An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias
    • Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Amer. Statist. Assoc. 57 348-368.
    • (1962) J. Amer. Statist. Assoc , vol.57 , pp. 348-368
    • Zellner, A.1
  • 33
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.