메뉴 건너뛰기




Volumn 13, Issue 8, 2013, Pages 3567-3581

Evaluation of reservoir sedimentation using data driven techniques

Author keywords

Artificial neural networks; Genetic programming; Model trees; Reservoir sedimentation; Soft computing techniques

Indexed keywords

COMPLEX SEDIMENTATION PROCESS; DATA DRIVEN TECHNIQUE; DISTRIBUTION PATTERNS; HYDROLOGICAL PROCESS; MODEL TREES; MULTIPLE LINEAR REGRESSIONS; RESERVOIR SEDIMENTATION; SOFTCOMPUTING TECHNIQUES;

EID: 84879069668     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.04.019     Document Type: Article
Times cited : (29)

References (89)
  • 1
    • 20444499368 scopus 로고    scopus 로고
    • Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models
    • J. de Vente, and J. Poesen Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models Earth-Science Reviews 71 2005 95 125
    • (2005) Earth-Science Reviews , vol.71 , pp. 95-125
    • De Vente, J.1    Poesen, J.2
  • 5
    • 0026302104 scopus 로고
    • Water and sediment yields into the Satluj River from the High Himalayas
    • P.D. Sharma, A.K. Goel, and R.S. Minhas Water and sediment yields into the Satluj River from the High Himalayas Mountain Research and Development 11 2 1991 87 100
    • (1991) Mountain Research and Development , vol.11 , Issue.2 , pp. 87-100
    • Sharma, P.D.1    Goel, A.K.2    Minhas, R.S.3
  • 6
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1
  • 7
    • 0027627965 scopus 로고
    • Working with neural networks
    • D. Hammerstrom Working with neural networks IEEE Spectrum 30 7 1993 46 53
    • (1993) IEEE Spectrum , vol.30 , Issue.7 , pp. 46-53
    • Hammerstrom, D.1
  • 10
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press Cambridge, MA
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning internal representations by error propagation Parallel Distributed Processing vol. I 1986 MIT Press Cambridge, MA 318 362
    • (1986) Parallel Distributed Processing , vol.VOL. I , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 11
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. I: Preliminary concepts Journal Hydrologic Engineering 5 2 2000 115 123
    • (2000) Journal Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 12
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Science 14 1990 179 211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 0034298548 scopus 로고    scopus 로고
    • A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff
    • P. Coulibaly, F. Anctil, P. Rasmussen, and B. Bobee A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff Hydrological Processes 14 2000 2755 2777
    • (2000) Hydrological Processes , vol.14 , pp. 2755-2777
    • Coulibaly, P.1    Anctil, F.2    Rasmussen, P.3    Bobee, B.4
  • 14
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • O.R. Dolling, and E.A. Varas Artificial neural networks for streamflow prediction Journal of Hydraulic Research 40 5 2003 547 554
    • (2003) Journal of Hydraulic Research , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 15
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • A. More, and M.C. Deo Forecasting wind with neural networks Marine Structures 16 2003 35 49
    • (2003) Marine Structures , vol.16 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 19
    • 34250818666 scopus 로고    scopus 로고
    • Comparison of neural network methods for infilling missing daily weather records
    • P. Coulibaly, and N.D. Evora Comparison of neural network methods for infilling missing daily weather records Journal of Hydrology 341 2007 27 41
    • (2007) Journal of Hydrology , vol.341 , pp. 27-41
    • Coulibaly, P.1    Evora, N.D.2
  • 20
    • 84954358683 scopus 로고    scopus 로고
    • Jordan recurrent neural network versus IHACRES in modelling daily streamflows
    • E.C. Carcano, P. Bartolini, M. Muselli, and L. Piroddi Jordan recurrent neural network versus IHACRES in modelling daily streamflows Journal of Hydrology 362 2008 291 307
    • (2008) Journal of Hydrology , vol.362 , pp. 291-307
    • Carcano, E.C.1    Bartolini, P.2    Muselli, M.3    Piroddi, L.4
  • 21
    • 0032495049 scopus 로고    scopus 로고
    • Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities
    • B. Kermanshahi Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities Neurocomputing 23 1998 125 133
    • (1998) Neurocomputing , vol.23 , pp. 125-133
    • Kermanshahi, B.1
  • 22
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • E.W. Saad, D.V. Prokhorov, and D.C. Wunsch Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks IEEE Transactions on Neural Networks 9 1998 1456 1470
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch, D.C.3
  • 24
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • G.-F. Lin, and L.-H. Chen A non-linear rainfall-runoff model using radial basis function network Journal of Hydrology 289 2004 1 8
    • (2004) Journal of Hydrology , vol.289 , pp. 1-8
    • Lin, G.-F.1    Chen, L.-H.2
  • 25
    • 49249105202 scopus 로고    scopus 로고
    • Application of an artificial neural network to estimate groundwater level fluctuation
    • A.K. Affandi, K. Watanabe, and H. Tirtomihardjo Application of an artificial neural network to estimate groundwater level fluctuation Journal of Spatial Hydrology 7 2 2007 23 46
    • (2007) Journal of Spatial Hydrology , vol.7 , Issue.2 , pp. 23-46
    • Affandi, A.K.1    Watanabe, K.2    Tirtomihardjo, H.3
  • 26
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • E. Mutlu, I. Chaubey, H. Hexmoor, and S.G. Bajwa Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed Hydrological Processes 22 26 2008 5097 5106
    • (2008) Hydrological Processes , vol.22 , Issue.26 , pp. 5097-5106
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 27
    • 60649110244 scopus 로고    scopus 로고
    • Investigation of internal functioning of the radial basis function neural network river flow forecasting models
    • D.A.K. Fernando, and Y. Shamseldin Investigation of internal functioning of the radial basis function neural network river flow forecasting models Journal of Hydrologic Engineering 14 3 2009 286 292
    • (2009) Journal of Hydrologic Engineering , vol.14 , Issue.3 , pp. 286-292
    • Fernando, D.A.K.1    Shamseldin, Y.2
  • 28
    • 44649197249 scopus 로고    scopus 로고
    • Estimating daily mean sea level heights using artificial neural networks
    • E. Sertel, H.K. Cigizoglu, and D.U. Sanli Estimating daily mean sea level heights using artificial neural networks Journal of Coastal Research 24 3 2008 727 734
    • (2008) Journal of Coastal Research , vol.24 , Issue.3 , pp. 727-734
    • Sertel, E.1    Cigizoglu, H.K.2    Sanli, D.U.3
  • 29
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in the river Yangtze, China
    • C.W. Dawson, C. Harpham, R.L. Wilby, and Y. Chen Evaluation of artificial neural network techniques for flow forecasting in the river Yangtze, China Hydrology and Earth System Sciences 6 4 2002 619 626
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 30
    • 0037428019 scopus 로고    scopus 로고
    • Estuary water-stage forecasting by using radial basis function neural network
    • F.-J. Chang, and Y.-C. Chen Estuary water-stage forecasting by using radial basis function neural network Journal of Hydrology 270 2003 158 166
    • (2003) Journal of Hydrology , vol.270 , pp. 158-166
    • Chang, F.-J.1    Chen, Y.-C.2
  • 31
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • K.P. Sudheer, A.K. Gosain, and K.S. Ramasastri Estimating actual evapotranspiration from limited climatic data using neural computing technique Journal of Irrigation and Drainage Engineering 129 3 2003 214 218
    • (2003) Journal of Irrigation and Drainage Engineering , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 33
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic Applications
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. II: Hydrologic Applications Journal Hydrologic Engineering 5 2 2000 124 137
    • (2000) Journal Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications Environmental Modelling and Software 15 2000 101 124
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 84879079279 scopus 로고    scopus 로고
    • Improved performance of hydrologic and water resources systems using soft computing techniques
    • A. Jain Improved performance of hydrologic and water resources systems using soft computing techniques Special issue on Soft Computing - Directions (published by IIT Kanpur) 7 3 2006 42 48
    • (2006) Special Issue on Soft Computing - Directions (Published by IIT Kanpur) , vol.7 , Issue.3 , pp. 42-48
    • Jain, A.1
  • 36
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of non-linear hydrological relationships
    • R.J. Abrahart, and L.M. See Neural network modelling of non-linear hydrological relationships Hydrology and Earth System Sciences 11 5 2007 1563 1579
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.5 , pp. 1563-1579
    • Abrahart, R.J.1    See, L.M.2
  • 37
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets
    • R.J. Abrahart, and S.M. White Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26 1 2001 19 24
    • (2001) Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 39
    • 0036171309 scopus 로고    scopus 로고
    • Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves
    • H.K. Cigizoglu Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves Turkish Journal of Engineering and Environmental Sciences 26 2002 27 36
    • (2002) Turkish Journal of Engineering and Environmental Sciences , vol.26 , pp. 27-36
    • Cigizoglu, H.K.1
  • 40
    • 84879104263 scopus 로고    scopus 로고
    • GIS integration of PISA model for assessing net soil erosion trends and off farm risk from existing databases. Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis
    • Rome, 25-28 March
    • F. Baiocco, P. Bazzoffi, C. Jacomini, M. Munafò, R. Napoli, F. Piva, A. Pugliese, and E. Vittori GIS integration of PISA model for assessing net soil erosion trends and off farm risk from existing databases. Agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis Proceedings of OECD Expert Meeting Rome, 25-28 March 2003 273 282
    • (2003) Proceedings of OECD Expert Meeting , pp. 273-282
    • Baiocco, F.1    Bazzoffi, P.2    Jacomini, C.3    Munafò, M.4    Napoli, R.5    Piva, F.6    Pugliese, A.7    Vittori, E.8
  • 41
    • 84879069800 scopus 로고    scopus 로고
    • PISA model to assess off-farm sediment flow indicator at watershed scale in Italy. Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis
    • Rome, 25-28 March
    • P. Bazzoffi, and A. Van Rompaey PISA model to assess off-farm sediment flow indicator at watershed scale in Italy. Agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis Proceedings of OECD Expert Meeting Rome, 25-28 March 2003 263 272
    • (2003) Proceedings of OECD Expert Meeting , pp. 263-272
    • Bazzoffi, P.1    Van Rompaey, A.2
  • 42
    • 0037455860 scopus 로고    scopus 로고
    • Artificial neural networks of soil erosion and runoff prediction at the plot scale
    • P. Licznar, and M.A. Nearing Artificial neural networks of soil erosion and runoff prediction at the plot scale Catena 51 2003 89 114
    • (2003) Catena , vol.51 , pp. 89-114
    • Licznar, P.1    Nearing, M.A.2
  • 43
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer preceptrons
    • H.K. Cigizoglu Estimation and forecasting of daily suspended sediment data by multi-layer preceptrons Advances in Water Resources 27 2004 185 195
    • (2004) Advances in Water Resources , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 44
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield models for Vamsadhara River basin (India)
    • A. Agarwal, R.D. Singh, S.K. Mishra, and P.K. Bhunya ANN-based sediment yield models for Vamsadhara River basin (India) Water SA 31 1 2005 95 100
    • (2005) Water SA , vol.31 , Issue.1 , pp. 95-100
    • Agarwal, A.1    Singh, R.D.2    Mishra, S.K.3    Bhunya, P.K.4
  • 47
    • 28844436447 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India
    • A. Sarangi, and A.K. Bhattacharya Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India Agricultural Water Management 78 2005 195 208
    • (2005) Agricultural Water Management , vol.78 , pp. 195-208
    • Sarangi, A.1    Bhattacharya, A.K.2
  • 48
    • 31744438288 scopus 로고    scopus 로고
    • Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed
    • A. Sarangi, C.A. Madramootoo, P. Enright, S.O. Prasher, and R.M. Patel Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed Current Science 89 12 2005 2022 2033
    • (2005) Current Science , vol.89 , Issue.12 , pp. 2022-2033
    • Sarangi, A.1    Madramootoo, C.A.2    Enright, P.3    Prasher, S.O.4    Patel, R.M.5
  • 49
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • H.K. Cigizoglu, and M. Alp Generalized regression neural network in modelling river sediment yield Advances in Engineering Software 37 2006 63 68
    • (2006) Advances in Engineering Software , vol.37 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 50
    • 33745259901 scopus 로고    scopus 로고
    • Quantitative estimation of reservoir sedimentation from three typhoon events
    • H.-Y. Lee, Y.-T. Lin, and Y.-J. Chiu Quantitative estimation of reservoir sedimentation from three typhoon events Journal of Hydrologic Engineering 11 4 2006 362 370
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.4 , pp. 362-370
    • Lee, H.-Y.1    Lin, Y.-T.2    Chiu, Y.-J.3
  • 51
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • N.S. Raghuwanshi, R. Singh, and L.S. Reddy Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India Journal of Hydrologic Engineering 11 1 2006 71 79
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 52
    • 78449236407 scopus 로고    scopus 로고
    • Modeling the time variation of reservoir trap efficiency
    • V. Garg, and V. Jothiprakash Modeling the time variation of reservoir trap efficiency Journal of Hydrologic Engineering 15 12 2010 1001 1015
    • (2010) Journal of Hydrologic Engineering , vol.15 , Issue.12 , pp. 1001-1015
    • Garg, V.1    Jothiprakash, V.2
  • 54
    • 0345290559 scopus 로고    scopus 로고
    • Applications of data-driven modelling and machine learning in control of water resources
    • M. Mohammadian, R.A. Sarker, X. Yao, Idea Group Publishing USA
    • D.P. Solomatine Applications of data-driven modelling and machine learning in control of water resources M. Mohammadian, R.A. Sarker, X. Yao, Computational Intelligence in Control 2002 Idea Group Publishing USA 197 217
    • (2002) Computational Intelligence in Control , pp. 197-217
    • Solomatine, D.P.1
  • 55
    • 0038456166 scopus 로고    scopus 로고
    • Data-driven modelling: Paradigm, methods, experiences
    • Cardiff, UK IWA Publishing London, UK
    • D.P. Solomatine Data-driven modelling: paradigm, methods, experiences Proceedings of 5th Int. Conf. on Hydroinformatics Cardiff, UK 2002 IWA Publishing London, UK
    • (2002) Proceedings of 5th Int. Conf. on Hydroinformatics
    • Solomatine, D.P.1
  • 56
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural networks in rainfall-runoff modelling
    • D.P. Solomatine, and K.N. Dulal Model tree as an alternative to neural networks in rainfall-runoff modelling Hydrological Sciences Journal 48 3 2003 399 411
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 57
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model tree in modelling water level-discharge relationship
    • B. Bhattacharya, and D.P. Solomatine Neural networks and M5 model tree in modelling water level-discharge relationship Neurocomputing 63 2005 381 396
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 59
    • 38549089135 scopus 로고    scopus 로고
    • Instance-based learning compared to other data driven methods in hydrologic forecasting
    • 10.1002/hyp.6592
    • D.P. Solomatine, M. Maskey, and D.L. Shrestha Instance-based learning compared to other data driven methods in hydrologic forecasting Hydrological Processes 21 2007 10.1002/hyp.6592
    • (2007) Hydrological Processes , vol.21
    • Solomatine, D.P.1    Maskey, M.2    Shrestha, D.L.3
  • 63
    • 10244261532 scopus 로고    scopus 로고
    • M5 model tree and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
    • D.P. Solomatine, and Y. Xue M5 model tree and neural networks: application to flood forecasting in the upper reach of the Huai River in China Journal of Hydrologic Engineering 9 6 2004 491 501
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 65
    • 65449173509 scopus 로고    scopus 로고
    • M5 model trees based modelling of reference evapotransipration
    • M. Pal, and S. Deswal M5 model trees based modelling of reference evapotransipration Hydrological Processes 23 2009 1437 1443
    • (2009) Hydrological Processes , vol.23 , pp. 1437-1443
    • Pal, M.1    Deswal, S.2
  • 68
    • 0002158924 scopus 로고    scopus 로고
    • Genetic programming as model induction engine
    • V. Babovic, and M. Keijzer Genetic programming as model induction engine Journal of Hydroinformatics 2 1 2000 35 60
    • (2000) Journal of Hydroinformatics , vol.2 , Issue.1 , pp. 35-60
    • Babovic, V.1    Keijzer, M.2
  • 72
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time-series modeling of daily flow rate
    • A. Guven Linear genetic programming for time-series modeling of daily flow rate Journal of Earth System Science 118 2 2009 137 146
    • (2009) Journal of Earth System Science , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 76
  • 81
    • 85009570458 scopus 로고    scopus 로고
    • Velocity prediction in compound channels with vegetated floodplains using genetic programming
    • E.L. Harris, V. Babovic, and R.A. Falconer Velocity prediction in compound channels with vegetated floodplains using genetic programming International Journal of River Basin Management 1 2 2003 117 123
    • (2003) International Journal of River Basin Management , vol.1 , Issue.2 , pp. 117-123
    • Harris, E.L.1    Babovic, V.2    Falconer, R.A.3
  • 82
    • 31444453851 scopus 로고    scopus 로고
    • Comparative analysis of data-driven and GIS-based conceptual rainfall-runoff model
    • A.W. Jayawardena, N. Muttil, and J.H.W. Lee Comparative analysis of data-driven and GIS-based conceptual rainfall-runoff model Journal of Hydrologic Engineering 11 1 2006 1 11
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.1 , pp. 1-11
    • Jayawardena, A.W.1    Muttil, N.2    Lee, J.H.W.3
  • 83
    • 34249799297 scopus 로고    scopus 로고
    • Modelling the dynamics of the evapotranspiration process using genetic programming
    • K. Parasuraman, A. Elshorbagy, and S.K. Carey Modelling the dynamics of the evapotranspiration process using genetic programming Hydrological Sciences Journal 52 3 2007 563 578
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.3 , pp. 563-578
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 85
    • 40049084636 scopus 로고    scopus 로고
    • Genetic programming approach for flood routing in natural channels
    • C. Sivapragasam, R. Maheswaran, and V. Venkatesh Genetic programming approach for flood routing in natural channels Hydrological Processes 22 2008 623 628
    • (2008) Hydrological Processes , vol.22 , pp. 623-628
    • Sivapragasam, C.1    Maheswaran, R.2    Venkatesh, V.3
  • 86
    • 69249091837 scopus 로고    scopus 로고
    • Reservoir sedimentation estimation using artificial neural networks
    • V. Jothiprakash, and V. Garg Reservoir sedimentation estimation using artificial neural networks Journal of Hydrologic Engineering 14 9 2009 1035 1040
    • (2009) Journal of Hydrologic Engineering , vol.14 , Issue.9 , pp. 1035-1040
    • Jothiprakash, V.1    Garg, V.2
  • 88
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • G.D. Garson Interpreting neural-network connection weights Artificial Intelligence Expert 6 7 1991 47 51
    • (1991) Artificial Intelligence Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 89
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • J.D. Olden, M.K. Joy, and R.G. Death An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data Ecological Modelling 178 2004 389 397
    • (2004) Ecological Modelling , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.