메뉴 건너뛰기




Volumn 67, Issue , 2013, Pages 136-148

Sparse high-dimensional fractional-norm support vector machine via DC programming

Author keywords

Difference of Convex functions programming; Feature selection; Fractional norm SVM; Reweighted L1 norm SVM Low sample size high dimensional data set; Support vector machine

Indexed keywords

DC PROGRAMMING AND DCA; DIFFERENCE OF CONVEX FUNCTIONS; FRACTIONAL-NORM SVM; HIGH DIMENSIONAL DATA; OPTIMIZATION PROBLEMS; STATISTICAL LEARNING THEORY; SUPPORT VECTOR MACHINE (SVMS); TRUST-REGION SUBPROBLEM;

EID: 84879054008     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.01.020     Document Type: Article
Times cited : (11)

References (37)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys Robust biomarker identification for cancer diagnosis with ensemble feature selection methods Bioinformatics 26 3 2010 392 398
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van De Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 3
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • PII S0304397597001151
    • E. Amaldi, and V. Kann On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems Theoretical Computer Science 209 1-2 1998 237 260 (Pubitemid 128450440)
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties Journal of the American Statistical Association 96 456 2001 1348 1361
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1361
    • Fan, J.1    Li, R.2
  • 9
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection newton method for support vector machine classification
    • G. Fung, and O. Mangasarian A feature selection newton method for support vector machine classification Computational Optimization and Applications 28 2 2004 185 202
    • (2004) Computational Optimization and Applications , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.1    Mangasarian, O.2
  • 10
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with a certain family of nonconvex penalties and DC programming
    • G. Gasso, A. Rakotomamonjy, and S. Canu Recovering sparse signals with a certain family of nonconvex penalties and DC programming IEEE Transactions on Signal Processing 57 12 2009 4686 4698
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.12 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 11
    • 70349731767 scopus 로고    scopus 로고
    • Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines
    • W. Guan, M. Zhou, C. Hampton, B. Benigno, L. Walker, A. Gray, J. McDonald, and F. Fernández Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines BMC Bioinformatics 10 1 2009 259
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 259
    • Guan, W.1    Zhou, M.2    Hampton, C.3    Benigno, B.4    Walker, L.5    Gray, A.6    McDonald, J.7    Fernández, F.8
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 1 2002 389 422 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 16
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • DOI 10.1214/aos/1015957397
    • K. Knight, and W. Fu Asymptotics for lasso-type estimators Annals of Statistics 2000 1356 1378 (Pubitemid 33244917)
    • (2000) Annals of Statistics , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 19
    • 38049053083 scopus 로고    scopus 로고
    • A continuous approach for the concave cost supply problem via DC programming and DCA
    • H. Le Thi, and T. Pham Dinh A continuous approach for the concave cost supply problem via DC programming and DCA Discrete Applied Mathematics 156 3 2008 325 338
    • (2008) Discrete Applied Mathematics , vol.156 , Issue.3 , pp. 325-338
    • Le Thi, H.1    Pham Dinh, T.2
  • 22
    • 33745801137 scopus 로고    scopus 로고
    • Exact 1-norm support vector machines via unconstrained convex differentiable minimization
    • O. Mangasarian Exact 1-norm support vector machines via unconstrained convex differentiable minimization The Journal of Machine Learning Research 7 2006 1530
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1530
    • Mangasarian, O.1
  • 24
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • DOI 10.1007/s10994-005-1505-9
    • J. Neumann, C. Schnörr, and G. Steidl Combined SVM-based feature selection and classification Machine Learning 61 1 2005 129 150 (Pubitemid 43049365)
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 25
    • 0032081028 scopus 로고    scopus 로고
    • A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem
    • T. Pham Dinh, and H. Le Thi A DC optimization algorithm for solving the trust-region subproblem SIAM Journal on Optimization 8 2 1998 476 505 (Pubitemid 128078209)
    • (1998) SIAM Journal on Optimization , vol.8 , Issue.2 , pp. 476-505
    • Pham Dinh Tao1    Hoai An, L.T.2
  • 26
  • 27
    • 51449102007 scopus 로고    scopus 로고
    • Stable sparse approximations via nonconvex optimization. In: Acoustics, Speech and Signal Processing, 2008
    • Saab, R.; Chartrand, R.; Yilmaz, O.; 2008. Stable sparse approximations via nonconvex optimization. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, pp. 3885-3888.
    • (2008) ICASSP 2008. IEEE International Conference On. IEEE , pp. 3885-3888
    • Saab, R.1    Chartrand, R.2    Yilmaz, O.3
  • 33
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • DOI 10.1162/08997660360581958
    • A. Yuille, and A. Rangarajan The concave-convex procedure Neural Computation 15 4 2003 915 936 (Pubitemid 37049812)
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 34
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • H. Zhang, J. Ahn, X. Lin, and C. Park Gene selection using support vector machines with non-convex penalty Bioinformatics 22 1 2005 88
    • (2005) Bioinformatics , vol.22 , Issue.1 , pp. 88
    • Zhang, H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 35
    • 35148838927 scopus 로고    scopus 로고
    • Surrogate maximization/minimization algorithms and extensions
    • DOI 10.1007/s10994-007-5022-x
    • Z. Zhang, J. Kwok, and D. Yeung Surrogate maximization/minimization algorithms and extensions Machine Learning 69 1 2007 1 33 (Pubitemid 47536395)
    • (2007) Machine Learning , vol.69 , Issue.1 , pp. 1-33
    • Zhang, Z.1    Kwok, J.T.2    Yeung, D.-Y.3
  • 37
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • H. Zou, and R. Li One-step sparse estimates in nonconcave penalized likelihood models Annals of Statistics 36 4 2008 1509
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1509
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.