메뉴 건너뛰기




Volumn 51, Issue 12, 2007, Pages 6380-6394

Support vector machines with adaptive Lq penalty

Author keywords

Adaptive penalty; Classification; Shrinkage; Support vector machine; Variable selection

Indexed keywords

ADAPTIVE ALGORITHMS; ADAPTIVE SYSTEMS; CLASSIFICATION (OF INFORMATION); ITERATIVE METHODS;

EID: 34547234238     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.02.006     Document Type: Article
Times cited : (81)

References (23)
  • 1
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelets approximations
    • Antoniadis A., and Fan J. Regularization of wavelets approximations. J. Amer. Statist. Assoc. 96 (2001) 939-967
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 2
    • 0026966646 scopus 로고    scopus 로고
    • Boser, B., Guyon, I., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: The Fifth Annual Conference on Computational Learning Theory. ACM, Pittsburgh, pp. 142-152.
  • 3
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Shavlik J. (Ed), Morgan Kaufmann, Los Altos, CA
    • Bradley P., and Mangasarian O. Feature selection via concave minimization and support vector machines. In: Shavlik J. (Ed). ICML'98 (1998), Morgan Kaufmann, Los Altos, CA
    • (1998) ICML'98
    • Bradley, P.1    Mangasarian, O.2
  • 5
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer K., and Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learning Res. 2 (2001) 265-292
    • (2001) J. Mach. Learning Res. , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 6
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D., and Johnstone I. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425-455
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J., and Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 456 (2001) 1348-1360
    • (2001) J. Amer. Statist. Assoc. , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 9
    • 84952149204 scopus 로고
    • An statistical view of some chemometrics regression tools
    • Frank I.E., and Friedman J.H. An statistical view of some chemometrics regression tools. Technometrics 35 (1993) 109-135
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 10
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: the bridge vs the lasso
    • Fu W.J. Penalized regressions: the bridge vs the lasso. J. Comput. Graphical Statist. 7 3 (1998) 397-416
    • (1998) J. Comput. Graphical Statist. , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.J.1
  • 11
    • 25144470140 scopus 로고    scopus 로고
    • Geometrical properties of ν support vector machines with different norms
    • Ikeda K., and Murata N. Geometrical properties of ν support vector machines with different norms. Neural Comput. 17 11 (2005) 2508-2529
    • (2005) Neural Comput. , vol.17 , Issue.11 , pp. 2508-2529
    • Ikeda, K.1    Murata, N.2
  • 12
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight K., and Fu W.J. Asymptotics for lasso-type estimators. Ann. Statist. 28 5 (2000) 1356-1378
    • (2000) Ann. Statist. , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.J.2
  • 13
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
    • Lee Y., Lin Y., and Wahba G. Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. J. Amer. Statist. Assoc. 99 465 (2004) 67-81
    • (2004) J. Amer. Statist. Assoc. , vol.99 , Issue.465 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 14
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Lin Y. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 6 (2002) 259-275
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 15
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin Y., Lee Y., and Wahba G. Support vector machines for classification in nonstandard situations. Mach. Learning 46 (2002) 191-202
    • (2002) Mach. Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 16
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R.J. Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 18
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV
    • Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
    • Wahba G. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods. Support Vector Learning (1998), MIT Press, Cambridge, MA 125-143
    • (1998) Advances in Kernel Methods. Support Vector Learning , pp. 125-143
    • Wahba, G.1
  • 19
    • 34547165213 scopus 로고
    • Soft Classification, a.k.a. risk estimation, via penalized log likelihood and smoothing spline analysis of variance
    • Petsche T. (Ed), MIT Press, Cambridge, MA
    • Wahba G., Gu C., Wang Y., and Chappell R. Soft Classification, a.k.a. risk estimation, via penalized log likelihood and smoothing spline analysis of variance. In: Petsche T. (Ed). Computational Learning Theory and Natural Learning Systems vol. 3 (1995), MIT Press, Cambridge, MA 127-158
    • (1995) Computational Learning Theory and Natural Learning Systems , vol.3 , pp. 127-158
    • Wahba, G.1    Gu, C.2    Wang, Y.3    Chappell, R.4
  • 20
    • 33746108067 scopus 로고    scopus 로고
    • Multi-category support vector machines, feature selection, and solution path
    • Wang L., and Shen X. Multi-category support vector machines, feature selection, and solution path. Statist. Sinica 16 (2006) 617-633
    • (2006) Statist. Sinica , vol.16 , pp. 617-633
    • Wang, L.1    Shen, X.2
  • 23
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., and Hastie T. Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67 (2005) 301-320
    • (2005) J. Roy. Statist. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.