메뉴 건너뛰기




Volumn 69, Issue 1, 2007, Pages 1-33

Surrogate maximization/minimization algorithms and extensions

Author keywords

AdaBoost; Convexity; Log linear model; Logistic regression; Surrogate function

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; MATHEMATICAL MODELS; REGRESSION ANALYSIS; TAYLOR SERIES;

EID: 35148838927     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-007-5022-x     Document Type: Article
Times cited : (39)

References (35)
  • 5
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • 2-3
    • Collins, M., Schapire, R. E., & Singer, Y. (2002). Logistic regression, AdaBoost and Bregman distances. Machine Learning, 47(2-3), 253-285.
    • (2002) Machine Learning , vol.47 , pp. 253-285
    • Collins, M.1    Schapire R., E.2    Singer, Y.3
  • 12
    • 0029267626 scopus 로고
    • A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography
    • 1
    • De Pierro, A. R. (1995). A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Transactions on Medical Imaging, 14(1), 132-137.
    • (1995) IEEE Transactions on Medical Imaging , vol.14 , pp. 132-137
    • De Pierro A., R.1
  • 13
    • 10444280570 scopus 로고    scopus 로고
    • The TM for maximising a conditional likelihood function
    • 4
    • Edwards, D., & Lauritzen, S. L. (2001). The TM for maximising a conditional likelihood function. Biometrika, 88(4), 961-972.
    • (2001) Biometrika , vol.88 , pp. 961-972
    • Edwards, D.1    Lauritzen S., L.2
  • 15
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • 1
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire R., E.2
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • 2
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2), 337-374.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman J., H.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 0002409860 scopus 로고    scopus 로고
    • A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
    • Kaufmann San Francisco
    • Joachims, T. (1997). A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In The fourteenth international conference on machine learning (pp. 143-151). San Francisco: Kaufmann.
    • (1997) The fourteenth international conference on machine learning , pp. 143-151
    • Joachims, T.1
  • 22
    • 0000808747 scopus 로고
    • A gradient algorithm locally equivalent to the EM algorithm
    • 2
    • Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society Series B, 57(2), 425-437.
    • (1995) Journal of the Royal Statistical Society Series B , vol.57 , pp. 425-437
    • Lange, K.1
  • 25
    • 0000315742 scopus 로고
    • The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence
    • 4
    • Liu, C., & Rubin, D. B. (1994). The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Bionmetrika, 84(4), 633-648.
    • (1994) Bionmetrika , vol.84 , pp. 633-648
    • Liu, C.1    Rubin D., B.2
  • 26
    • 14344249153 scopus 로고    scopus 로고
    • Discussion on "optimization transfer using surrogate objective functions"
    • 1
    • Meng, X.-L. (2000). Discussion on "optimization transfer using surrogate objective functions". Journal of Computational and Graphical Statistics, 9(1), 35-43.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 35-43
    • Meng, X.-L.1
  • 27
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • 2
    • Meng, X.-L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Bionmetrika, 80(2), 267-278.
    • (1993) Bionmetrika , vol.80 , pp. 267-278
    • Meng, X.-L.1    Rubin D., B.2
  • 30
    • 0004267646 scopus 로고
    • Princeton University Press Princeton
    • Rockafellar, T. (1970). Convex analysis. Princeton: Princeton University Press.
    • (1970) Convex analysis
    • Rockafellar, T.1
  • 32
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire R., E.1
  • 33
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire R., E.1    Singer, Y.2
  • 34
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95-103.
    • (1983) Annals of Statistics , vol.11 , pp. 95-103
    • Wu C. F., J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.