메뉴 건너뛰기




Volumn 18, Issue 9, 2004, Pages 422-429

Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)

Author keywords

0.632 estimate; Adjusted cross validation; Bootstrap; Cross validation; Mean squared error of prediction (MSEP); Partial least squares regression (PLSR); Principal component regression (PCR)

Indexed keywords

ERRORS; FORECASTING; LEAST SQUARES APPROXIMATIONS; MEAN SQUARE ERROR; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS;

EID: 16244390208     PISSN: 08869383     EISSN: None     Source Type: Journal    
DOI: 10.1002/cem.887     Document Type: Article
Times cited : (209)

References (25)
  • 2
    • 84879799188 scopus 로고
    • Estimation of error rates in discriminant analysis
    • Lachenbruch PA, Mickey MR. Estimation of error rates in discriminant analysis. Technometrics 1968; 10: 1-11.
    • (1968) Technometrics , vol.10 , pp. 1-11
    • Lachenbruch, P.A.1    Mickey, M.R.2
  • 6
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods
    • Burman P. A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods. Biometrika 1989; 76: 503-514.
    • (1989) Biometrika , vol.76 , pp. 503-514
    • Burman, P.1
  • 7
    • 0009935784 scopus 로고
    • Estimation of optimal transformations using ν-fold cross validation and repeated learning-testing methods
    • Burman P. Estimation of optimal transformations using ν-fold cross validation and repeated learning-testing methods. Sankhyā Indian J. Statist. 1990; 52: 314-345.
    • (1990) Sankhyā Indian J. Statist. , vol.52 , pp. 314-345
    • Burman, P.1
  • 9
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J. Am. Statist. Assoc. 1983; 78: 316-331.
    • (1983) J. Am. Statist. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 10
    • 0009090307 scopus 로고
    • Bootstrap and cross-validation estimates of the prediction error for linear regression models
    • Bunke O, Droge B. Bootstrap and cross-validation estimates of the prediction error for linear regression models. Ann. Statist. 1984; 12: 1400-1424.
    • (1984) Ann. Statist. , vol.12 , pp. 1400-1424
    • Bunke, O.1    Droge, B.2
  • 11
    • 0009772779 scopus 로고
    • On the bias and variability of bootstrap and cross-validation estimates of error rate in discrimination problems
    • Davison AC, Hall P. On the bias and variability of bootstrap and cross-validation estimates of error rate in discrimination problems. Biometrika 1992; 79: 279-284.
    • (1992) Biometrika , vol.79 , pp. 279-284
    • Davison, A.C.1    Hall, P.2
  • 12
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The .632+ bootstrap method
    • Efron B, Tibshirani RJ. Improvements on cross-validation: the .632+ bootstrap method. J. Am. Statist. Assoc. 1997; 92: 548-560.
    • (1997) J. Am. Statist. Assoc. , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.J.2
  • 14
    • 0002538983 scopus 로고    scopus 로고
    • Assessing error rate estimators: The leave-one-out method reconsidered
    • Krzanowski WJ, Hand DJ. Assessing error rate estimators: the leave-one-out method reconsidered. Aust J. Statist. 1997; 39: 35-46.
    • (1997) Aust. J. Statist. , vol.39 , pp. 35-46
    • Krzanowski, W.J.1    Hand, D.J.2
  • 15
    • 0033662470 scopus 로고    scopus 로고
    • Choosing the number of factors in partial least squares regression: Estimating and minimizing the mean squared error of prediction
    • Denham MC. Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction. J. Chemometrics 2000; 14: 351-361.
    • (2000) J. Chemometrics , vol.14 , pp. 351-361
    • Denham, M.C.1
  • 16
    • 0000302531 scopus 로고    scopus 로고
    • Bootstrapping principal component regression models
    • Wehrens R, van der Linden WE. Bootstrapping principal component regression models. J. Chemometrics 1997; 11: 157-171.
    • (1997) J. Chemometrics , vol.11 , pp. 157-171
    • Wehrens, R.1    Van Der Linden, W.E.2
  • 17
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: Discrete index set
    • L, cross-validation and generalized cross-validation: discrete index set. Ann. Statist. 1987; 15: 958-975.
    • (1987) Ann. Statist. , vol.15 , pp. 958-975
    • Li, K.-C.1
  • 18
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • Shao J. Linear model selection by cross-validation. J. Am. Statist. Assoc. 1993; 88: 486-494.
    • (1993) J. Am. Statist. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 19
    • 0030537683 scopus 로고    scopus 로고
    • Bootstrap model selection
    • Shao J. Bootstrap model selection. J. Am. Statist. Assoc. 1996; 91: 655-665.
    • (1996) J. Am. Statist. Assoc. , vol.91 , pp. 655-665
    • Shao, J.1
  • 20
    • 16244416669 scopus 로고
    • On the biases of error estimators in prediction problems
    • Hall P. On the biases of error estimators in prediction problems. Statist. Prob. Lett. 1995; 24: 257-262.
    • (1995) Statist. Prob. Lett. , vol.24 , pp. 257-262
    • Hall, P.1
  • 22
    • 0034975507 scopus 로고    scopus 로고
    • Data-based interval estimation of classification error rates
    • Krzanowski WJ. Data-based interval estimation of classification error rates. J. Appl. Statist. 2001; 28: 585-595.
    • (2001) J. Appl. Statist. , vol.28 , pp. 585-595
    • Krzanowski, W.J.1
  • 23
    • 0032517815 scopus 로고    scopus 로고
    • Validation and verification of regression in small data sets
    • Martens HA, Dardenne P. Validation and verification of regression in small data sets. Chemometrics Intell. Lab. Syst. 1998; 44: 1-2: 99-121.
    • (1998) Chemometrics Intell. Lab. Syst. , vol.44 , Issue.1-2 , pp. 99-121
    • Martens, H.A.1    Dardenne, P.2
  • 24
    • 84987324909 scopus 로고
    • Comparison of some objective methods used to assess meat tenderness
    • Bouton PE, Harris PV. Comparison of some objective methods used to assess meat tenderness. J. Food Sci. 1972; 37: 218-221.
    • (1972) J. Food Sci. , vol.37 , pp. 218-221
    • Bouton, P.E.1    Harris, P.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.