메뉴 건너뛰기




Volumn 22, Issue 6, 2012, Pages 1209-1222

On sequential Monte Carlo, partial rejection control and approximate Bayesian computation

Author keywords

Approximate Bayesian computation; Bayesian computation; Likelihood free inference; Partial rejection control; Sequential Monte Carlo samplers

Indexed keywords


EID: 84867997236     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-012-9315-y     Document Type: Article
Times cited : (48)

References (41)
  • 2
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
    • Arulampalam, S., Maskell, S., Gorodon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174-188 (2002).
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gorodon, N.3    Clapp, T.4
  • 3
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M. A., Zhang, W., Balding, D. J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035 (2002).
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 5
    • 77956219298 scopus 로고    scopus 로고
    • Approximate Bayesian computation: A non-parametric perspective
    • Blum, M. G. B.: Approximate Bayesian computation: A non-parametric perspective. J. Am. Stat. Assoc. 105, 1178-1187 (2010).
    • (2010) J. Am. Stat. Assoc. , vol.105 , pp. 1178-1187
    • Blum, M.G.B.1
  • 7
    • 21644457738 scopus 로고    scopus 로고
    • Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference
    • Chopin, N.: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat. 32, 2385-2411 (2004).
    • (2004) Ann. Stat. , vol.32 , pp. 2385-2411
    • Chopin, N.1
  • 8
    • 84863761791 scopus 로고    scopus 로고
    • Adaptive methods for sequential importance sampling with application to state space models
    • Lausanne
    • Cornebise, J., Moulines, E., Olsson, J.: Adaptive methods for sequential importance sampling with application to state space models. In: Proc. 16th European Sig. Proc. Conference, Lausanne (2008).
    • (2008) Proc. 16th European Sig. Proc. Conference
    • Cornebise, J.1    Moulines, E.2    Olsson, J.3
  • 9
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering for practitioners
    • Crisan, D., Doucet, A.: A survey of convergence results on particle filtering for practitioners. IEEE Trans. Signal Process. 50(3), 736-746 (2002).
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.3 , pp. 736-746
    • Crisan, D.1    Doucet, A.2
  • 11
    • 0032221182 scopus 로고    scopus 로고
    • Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems
    • Del Moral, P.: Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems. Ann. Appl. Probab. 8, 438-495 (1998).
    • (1998) Ann. Appl. Probab. , vol.8 , pp. 438-495
    • Del Moral, P.1
  • 14
    • 84857190557 scopus 로고    scopus 로고
    • An adaptive sequential Monte Carlo method for approximate Bayesian computation
    • doi: 10. 1007/s11222-011-9271-y
    • Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. (2011). doi: 10. 1007/s11222-011-9271-y.
    • (2011) Stat. Comput.
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 15
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • D. Crisan and B. Rozovsky (Eds.), Oxford: Oxford University Press
    • Doucet, A., Johansen, A. M.: A tutorial on particle filtering and smoothing: Fifteen years later. In: Crisan, D., Rozovsky, B. (eds.) Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2009).
    • (2009) Oxford Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.M.2
  • 17
    • 79952603857 scopus 로고    scopus 로고
    • Estimation of parameters for macroparasite population evolution using approximate Bayesian computation
    • Drovandi, C. C., Pettitt, A. N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225-233 (2011).
    • (2011) Biometrics , vol.67 , pp. 225-233
    • Drovandi, C.C.1    Pettitt, A.N.2
  • 18
    • 84982907230 scopus 로고    scopus 로고
    • Generalised linear mixed model analysis via sequential Monte Carlo sampling
    • Fan, Y., Leslie, D. S., Wand, M. P.: Generalised linear mixed model analysis via sequential Monte Carlo sampling. Electron. J. Stat. 2, 916-938 (2008).
    • (2008) Electron. J. Stat. , vol.2 , pp. 916-938
    • Fan, Y.1    Leslie, D.S.2    Wand, M.P.3
  • 20
    • 58149173361 scopus 로고    scopus 로고
    • Credibility for the chain ladder reserving method
    • Gisler, A., Wüthrich, M. V.: Credibility for the chain ladder reserving method. ASTIN Bull. 38, 565-600 (2008).
    • (2008) ASTIN Bull. , vol.38 , pp. 565-600
    • Gisler, A.1    Wüthrich, M.V.2
  • 21
    • 54049111768 scopus 로고    scopus 로고
    • Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition
    • Jasra, A., Doucet, A.: Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition. Stat. Probab. Lett. 78, 3062-3069 (2008).
    • (2008) Stat. Probab. Lett. , vol.78 , pp. 3062-3069
    • Jasra, A.1    Doucet, A.2
  • 22
    • 49349086599 scopus 로고    scopus 로고
    • A note on auxiliary particle filters
    • Johansen, A., Doucet, A.: A note on auxiliary particle filters. Stat. Probab. Lett. 78(12), 1498-1504 (2008).
    • (2008) Stat. Probab. Lett. , vol.78 , Issue.12 , pp. 1498-1504
    • Johansen, A.1    Doucet, A.2
  • 23
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian, non-linear state space models
    • Kitigawa, G.: Monte Carlo filter and smoother for non-Gaussian, non-linear state space models. J. Comput. Graph. Stat. 5, 1-25 (1996).
    • (1996) J. Comput. Graph. Stat. , vol.5 , pp. 1-25
    • Kitigawa, G.1
  • 24
    • 30344486983 scopus 로고    scopus 로고
    • Recursive Monte Carlo filters: Algorithms and theoretical analysis
    • Kunsch, H. R.: Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Stat. 33, 1983-2021 (2005).
    • (2005) Ann. Stat. , vol.33 , pp. 1983-2021
    • Kunsch, H.R.1
  • 25
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo for dynamic systems
    • Liu, J., Chen, R.: Sequential Monte Carlo for dynamic systems. J. Am. Stat. Assoc. 93, 1032-1044 (1998).
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1032-1044
    • Liu, J.1    Chen, R.2
  • 26
    • 0032351643 scopus 로고    scopus 로고
    • Rejection control and sequential importance sampling
    • Liu, J., Chen, R., Wong, W.: Rejection control and sequential importance sampling. J. Am. Stat. Assoc. 93, 1022-1031 (1998).
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1022-1031
    • Liu, J.1    Chen, R.2    Wong, W.3
  • 28
    • 84972048649 scopus 로고
    • Distribution-free calculation of the standard error of chain ladder reserve estimates
    • Mack, T.: Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bull. 23, 213-225 (1993).
    • (1993) ASTIN Bull. , vol.23 , pp. 213-225
    • Mack, T.1
  • 31
    • 77953292564 scopus 로고    scopus 로고
    • Chain ladder method: Bayesian bootstrap versus classical bootstrap
    • Peters, G. W., Wüthrich, M. V., Shevchenko, P. V.: Chain ladder method: Bayesian bootstrap versus classical bootstrap. Insur. Math. Econ. 47, 36-51 (2010).
    • (2010) Insur. Math. Econ. , vol.47 , pp. 36-51
    • Peters, G.W.1    Wüthrich, M.V.2    Shevchenko, P.V.3
  • 32
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • Pitt, M., Shephard, N.: Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590-591 (1999).
    • (1999) J. Am. Stat. Assoc. , vol.94 , Issue.446 , pp. 590-591
    • Pitt, M.1    Shephard, N.2
  • 33
    • 67649819681 scopus 로고    scopus 로고
    • Model criticism based on likelihood-free inference, with an application to protein network evolution
    • Ratmann, O., Andrieu, C., Hinkley, T., Wiuf, C., Richardson, S.: Model criticism based on likelihood-free inference, with an application to protein network evolution. Proc. Natl. Acad. Sci. USA 106, 10576-10581 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 10576-10581
    • Ratmann, O.1    Andrieu, C.2    Hinkley, T.3    Wiuf, C.4    Richardson, S.5
  • 34
    • 79955996340 scopus 로고    scopus 로고
    • Likelihood-free Markov Chain Monte Carlo
    • S. P. Brooks, A. Gelman, G. Jones, and X.-L. Meng (Eds.), London: CRC Press
    • Sisson, S. A., Fan, Y.: Likelihood-free Markov Chain Monte Carlo. In: Brooks, S. P., Gelman, A., Jones, G., Meng, X.-L. (eds.) Handbook of Markov chain Monte Carlo, pp. 319-341. CRC Press, London (2011).
    • (2011) Handbook of Markov Chain Monte Carlo , pp. 319-341
    • Sisson, S.A.1    Fan, Y.2
  • 35
    • 33846939958 scopus 로고    scopus 로고
    • Sequential Monte Carlo without likelihoods
    • Errata 106, 16889 (2009)
    • Sisson, S. A., Fan, Y., Tanaka, M. M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760-1765 (2007). Errata 106, 16889 (2009).
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 1760-1765
    • Sisson, S.A.1    Fan, Y.2    Tanaka, M.M.3
  • 36
    • 0031014291 scopus 로고    scopus 로고
    • Inferring coalescence times from DNA sequence data
    • Tavaré, S., Balding, D. J., Griffiths, R. C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145, 505-518 (1997).
    • (1997) Genetics , vol.145 , pp. 505-518
    • Tavaré, S.1    Balding, D.J.2    Griffiths, R.C.3    Donnelly, P.4
  • 37
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M. P. H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187-202 (2009).
    • (2009) J. R. Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.H.5
  • 38
    • 0000782444 scopus 로고
    • Approximating posterior distributions by mixtures
    • West, M.: Approximating posterior distributions by mixtures. J. R. Stat. Soc. B 55, 409-422 (1993).
    • (1993) J. R. Stat. Soc. B , vol.55 , pp. 409-422
    • West, M.1
  • 39
    • 60749103064 scopus 로고    scopus 로고
    • Approximate Bayesian computation (ABC) gives exact results under the assumption of model error
    • Wilkinson, R. D.: Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Technical report (2008), http://arxiv. org/abs/0811. 3355.
    • (2008) Technical report
    • Wilkinson, R.D.1
  • 41
    • 84867989547 scopus 로고    scopus 로고
    • Bayesian approach for prediction error in chain ladder claims reserving
    • July
    • Yao, J.: Bayesian approach for prediction error in chain ladder claims reserving. In: 38th International ASTIN Colloquium, July (2008).
    • (2008) 38th International ASTIN Colloquium
    • Yao, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.