메뉴 건너뛰기




Volumn 47, Issue 7, 2011, Pages

Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN CALIBRATION; BAYESIAN STATISTICAL INFERENCE; EASTERN AUSTRALIA; HYDROLOGIC MODELS; HYDROLOGICAL MODELS; MARKOV CHAIN MONTE CARLO; MCMC SAMPLING; MODEL CALIBRATION; MONTE CARLO ALGORITHMS; OPTIMAL SOLUTIONS; PARAMETER ESTIMATE; PARAMETER OPTIMIZATION; PARAMETER SPACES; PARAMETER UNCERTAINTY; PRIOR DISTRIBUTION; PROBABILISTIC FRAMEWORK; SAMPLING DISTRIBUTION; SAMPLING MECHANISMS; SEQUENTIAL MONTE CARLO; STOCHASTIC ALGORITHMS;

EID: 79961229131     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2010WR010217     Document Type: Article
Times cited : (57)

References (56)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • DOI 10.1109/78.978374, PII S1053587X0200569X
    • Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp (2002), A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50(2), 174-188, doi:10.1109/78.978374. (Pubitemid 34291500)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 2
    • 0034989285 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
    • DOI 10.1029/2000WR900363
    • Bates, B. C., and E. P. Campbell (2001), A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37(4), 937-947, doi:10.1029/2000WR900363. (Pubitemid 32516048)
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 937-947
    • Bates, B.C.1    Campbell, E.P.2
  • 3
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • doi:10.1002/hyp.3360060305
    • Beven, K., and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6(3), 279-298, doi:10.1002/hyp.3360060305.
    • (1992) Hydrol. Processes , vol.6 , Issue.3 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 4
    • 0001962070 scopus 로고
    • A hydrograph-based model for estimating the water yield of ungauged catchments
    • Aust., Canberra
    • Boughton, W. C. (1993), A hydrograph-based model for estimating the water yield of ungauged catchments, Inst. of Eng. Aust., Canberra.
    • (1993) Inst. of Eng.
    • Boughton, W.C.1
  • 5
    • 0034508765 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods
    • DOI 10.1029/2000WR900207
    • Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36(12), 3663-3674, doi:10.1029/ 2000WR900207. (Pubitemid 32039916)
    • (2000) Water Resources Research , vol.36 , Issue.12 , pp. 3663-3674
    • Boyle, D.P.1    Gupta, H.V.2    Sorooshian, S.3
  • 6
    • 72149123038 scopus 로고    scopus 로고
    • Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation
    • doi:10.1029/2007WR006749
    • Bulygina, N., and H. Gupta (2009), Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45, W00B13, doi:10.1029/2007WR006749.
    • (2009) Water Resour. Res. , vol.45
    • Bulygina, N.1    Gupta, H.2
  • 7
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • doi:10.2307/2669477
    • Celeux, G., M. Hurn, and C. P. Robert (2000), Computational and inferential difficulties with mixture posterior distributions, J. Am. Stat. Assoc., 95(451), 957-970, doi:10.2307/2669477.
    • (2000) J. Am. Stat. Assoc. , vol.95 , Issue.451 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 8
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • DOI 10.1093/biomet/89.3.539
    • Chopin, N. (2002), A sequential particle filter method for static models, Biometrika, 89(3), 539-552, doi:10.1093/biomet/89.3.539. (Pubitemid 41311963)
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 539-551
    • Chopin, N.1
  • 9
    • 51349141022 scopus 로고    scopus 로고
    • Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models
    • doi:10.1029/2007WR006735
    • Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.
    • (2008) Water Resour. Res. , vol.44
    • Clark, M.P.1    Slater, A.G.2    Rupp, D.E.3    Woods, R.A.4    Vrugt, J.A.5    Gupta, H.V.6    Wagener, T.7    Hay, L.E.8
  • 10
    • 74049163249 scopus 로고    scopus 로고
    • Learn from thy neighbor: Parallel-chain and regional adaptive MCMC
    • doi:10.1198/jasa.2009.tm08393
    • Craiu, R. V., J. Rosenthal, and C. Yang (2009), Learn from thy neighbor: Parallel-chain and regional adaptive MCMC, J. Am. Stat. Assoc., 104(488), 1454-1466, doi:10.1198/jasa.2009.tm08393.
    • (2009) J. Am. Stat. Assoc. , vol.104 , Issue.488 , pp. 1454-1466
    • Craiu, R.V.1    Rosenthal, J.2    Yang, C.3
  • 12
    • 41549124558 scopus 로고    scopus 로고
    • Sequential monte carlo for bayesian computation
    • edited by J. M. Bernardo et al., Oxford Univ. Press, Oxford, U. K
    • Del Moral, P., A. Doucet, and A. Jasra (2007), Sequential Monte Carlo for Bayesian computation, in Bayesian Statistics, vol. 8, edited by J. M. Bernardo et al., pp. 1-34, Oxford Univ. Press, Oxford, U. K.
    • (2007) Bayesian Statistics , vol.8 , pp. 1-34
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 14
    • 79952603857 scopus 로고    scopus 로고
    • Estimation of parameters for microparisite population evolution using approximate Bayesian computation
    • Drovandi, C. C., and A. N. Pettitt (2011), Estimation of parameters for microparisite population evolution using approximate Bayesian computation, Biometrics, 67(1), 225-233.
    • (2011) Biometrics , vol.67 , Issue.1 , pp. 225-233
    • Drovandi, C.C.1    Pettitt, A.N.2
  • 15
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • doi:10.1029/91WR02985
    • Duan, Q. Y., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015-1031, doi:10.1029/91WR02985.
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.3
  • 16
    • 84982907230 scopus 로고    scopus 로고
    • Generalised linear mixed model analysis via sequential Monte Carlo sampling
    • Fan, Y., D. S. Leslie, and M. P. Wand (2008), Generalised linear mixed model analysis via sequential Monte Carlo sampling, Electron. J. Stat., 2, 916-938.
    • (2008) Electron. J. Stat. , vol.2 , pp. 916-938
    • Fan, Y.1    Leslie, D.S.2    Wand, M.P.3
  • 17
    • 41549102613 scopus 로고    scopus 로고
    • Computational methods for complex stochastic systems: A review of some alternatives to MCMC
    • doi:10.1007/s11222-007-9045-8
    • Fearnhead, P. (2008), Computational methods for complex stochastic systems: A review of some alternatives to MCMC, Stat. Comput., 18(2), 151-171, doi:10.1007/s11222-007-9045-8.
    • (2008) Stat. Comput. , vol.18 , Issue.2 , pp. 151-171
    • Fearnhead, P.1
  • 18
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • doi:10.1214/ss/1177011136
    • Gelman, A., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-472, doi:10.1214/ss/1177011136.
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 20
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • doi:10.2307/2291325
    • Geyer, C. J., and E. A. Thompson (1995), Annealing Markov chain Monte Carlo with applications to ancestral inference, J. Am. Stat. Assoc., 90(431), 909-920, doi:10.2307/2291325.
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.431 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 22
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • doi:10.1049/ip-f-2.1993.0015
    • Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993), Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proc. F Radar Signal Process., 140(2), 107-113, doi:10.1049/ip-f-2.1993.0015.
    • (1993) IEE Proc. F Radar Signal Process. , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 23
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • doi:10.1007/s001800050022
    • Haario, H., E. Saksman, and J. Tamminen (1999), Adaptive proposal distribution for random walk Metropolis algorithm, Comput. Stat., 14(3), 375-395, doi:10.1007/s001800050022.
    • (1999) Comput. Stat. , vol.14 , Issue.3 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 24
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm, Bernoulli, 7(2), 223-242, doi:10.2307/3318737. (Pubitemid 33793059)
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 25
    • 33750082644 scopus 로고    scopus 로고
    • DRAM: Efficient adaptive MCMC
    • DOI 10.1007/s11222-006-9438-0
    • Haario, H., M. Laine, A. Mira, and E. Saksman (2006), DRAM: Efficient adaptive MCMC, Stat. Comput., 16(4), 339-354, doi:10.1007/s11222-006-9438-0. (Pubitemid 44581755)
    • (2006) Statistics and Computing , vol.16 , Issue.4 , pp. 339-354
    • Haario, H.1    Laine, M.2    Mira, A.3    Saksman, E.4
  • 26
    • 0001956933 scopus 로고    scopus 로고
    • How well does your model fit the data?
    • Hall,M. J. (2001), How well does your model fit the data?, J. Hydroinf., 3(1), 49-55.
    • (2001) J. Hydroinf. , vol.3 , Issue.1 , pp. 49-55
    • Hall, M.J.1
  • 27
    • 34547863202 scopus 로고    scopus 로고
    • On population-based simulation for static inference
    • doi:10.1007/ s11222-007-9028-9
    • Jasra, A., D. Stephens, and C. Holmes (2007), On population-based simulation for static inference, Stat. Comput., 17(3), 263-279, doi:10.1007/ s11222-007-9028-9.
    • (2007) Stat. Comput. , vol.17 , Issue.3 , pp. 263-279
    • Jasra, A.1    Stephens, D.2    Holmes, C.3
  • 28
    • 69249179453 scopus 로고    scopus 로고
    • Evolutionary optimization of dynamics models in sequential Monte Carlo target tracking
    • doi:10.1109/TEVC.2009.2017518
    • Johansson, A. M., and E. A. Lehmann (2009), Evolutionary optimization of dynamics models in sequential Monte Carlo target tracking, IEEE Trans. Evol. Comput., 13(4), 879-894, doi:10.1109/TEVC.2009.2017518.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.4 , pp. 879-894
    • Johansson, A.M.1    Lehmann, E.A.2
  • 29
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • doi:10.2307/1390750
    • Kitagawa, G. (1996), Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graphical Stat., 5(1), 1-25, doi:10.2307/1390750.
    • (1996) J. Comput. Graphical Stat. , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 30
    • 33748779178 scopus 로고    scopus 로고
    • Equi-energy sampler with applications in statistical inference and statistical mechanics
    • DOI 10.1214/009053606000000515
    • Kou, S. C., Q. Zhou, and W. H. Wong (2006), Equi-energy sampler with applications in statistical inference and statistical mechanics, Ann. Stat., 34(4), 1581-1619, doi:10.1214/009053606000000515. (Pubitemid 44875071)
    • (2006) Annals of Statistics , vol.34 , Issue.4 , pp. 1581-1619
    • Kou, S.C.1    Zhou, Q.2    Wong, W.H.3
  • 31
    • 0031748081 scopus 로고    scopus 로고
    • Assessment of hydrologic parameter uncertainty and the worth of multiresponse data
    • Kuczera, G., and M. Mroczkowski (1998), Assessment of hydrologic parameter uncertainty and the worth of multiresponse data, Water Resour. Res., 34(6), 1481-1489, doi:10.1029/98WR00496. (Pubitemid 28253521)
    • (1998) Water Resources Research , vol.34 , Issue.6 , pp. 1481-1489
    • Kuczera, G.1    Mroczkowski, M.2
  • 32
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • DOI 10.1016/S0022-1694(98)00198-X, PII S002216949800198X
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211(1-4), 69-85, doi:10.1016/S0022-1694(98)00198-X. (Pubitemid 29014557)
    • (1998) Journal of Hydrology , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 34
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • doi:10.2307/2669847
    • Liu, J. S., and R. Chen (1998), Sequential Monte Carlo methods for dynamic systems, J. Am. Stat. Assoc., 93(443), 1032-1044, doi:10.2307/2669847.
    • (1998) J. Am. Stat. Assoc. , vol.93 , Issue.443 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 35
    • 1642295818 scopus 로고    scopus 로고
    • A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
    • doi:10.1029/2003WR002378
    • Marshall, L., D. Nott, and A. Sharma (2004), A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water Resour. Res., 40, W02501, doi:10.1029/2003WR002378.
    • (2004) Water Resour. Res. , vol.40
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 36
    • 67649865631 scopus 로고    scopus 로고
    • Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme
    • doi:10.1029/ 2008WR007288
    • McMillan, H., and M. Clark (2009), Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme, Water Resour. Res., 45, W04418, doi:10.1029/ 2008WR007288.
    • (2009) Water Resour. Res. , vol.45
    • McMillan, H.1    Clark, M.2
  • 37
    • 5744249209 scopus 로고
    • Equation of state calculations by fast computing machines
    • doi:10.1063/1.1699114
    • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953), Equation of state calculations by fast computing machines, J. Chem. Phys., 21(6), 1087-1092, doi:10.1063/1.1699114.
    • (1953) J. Chem. Phys. , vol.21 , Issue.6 , pp. 1087-1092
    • Metropolis, N.1    Rosenbluth, A.W.2    Rosenbluth, M.N.3    Teller, A.H.4    Teller, E.5
  • 38
    • 67649854447 scopus 로고    scopus 로고
    • Combining site and regional flood information using a Bayesian Monte Carlo approach
    • doi:10.1029/2008WR007173
    • Micevski, T., and G. Kuczera (2009), Combining site and regional flood information using a Bayesian Monte Carlo approach, Water Resour. Res., 45, W04405, doi:10.1029/2008WR007173.
    • (2009) Water Resour. Res. , vol.45
    • Micevski, T.1    Kuczera, G.2
  • 39
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    • DOI 10.1016/j.advwatres.2004.09.002, PII S0309170804001605
    • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005a), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28(2), 135-147, doi:10.1016/j.advwatres. 2004.09.002. (Pubitemid 40102390)
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 40
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • DOI 10.1029/2004WR003604, W05012
    • Moradkhani, H., K. L. Hsu, H. Gupta, and S. Sorooshian (2005b), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604. (Pubitemid 40856462)
    • (2005) Water Resources Research , vol.41 , Issue.5 , pp. 1-17
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.3    Sorooshian, S.4
  • 42
    • 22844450838 scopus 로고    scopus 로고
    • Joint bayesian estimation of alignment and phylogeny
    • DOI 10.1080/10635150590947041
    • Redelings, B. D., and M. A. Suchard (2005), Joint Bayesian estimation of alignment and phylogeny, Syst. Biol., 54(3), 401-418, doi:10.1080/ 10635150590947041. (Pubitemid 41040440)
    • (2005) Systematic Biology , vol.54 , Issue.3 , pp. 401-418
    • Redelings, B.D.1    Suchard, M.A.2
  • 43
    • 63849118068 scopus 로고    scopus 로고
    • Towards automating model selection for a mark-recapture-recovery analysis
    • doi:10.1111/j.1467-9876.2008.00656.x
    • Sisson, S. A., and Y. Fan (2009), Towards automating model selection for a mark-recapture-recovery analysis, J. R. Stat. Soc., Ser. C Appl. Stat., 58(2), 247-266, doi:10.1111/j.1467-9876.2008.00656.x.
    • (2009) J. R. Stat. Soc., Ser. C Appl. Stat. , vol.58 , Issue.2 , pp. 247-266
    • Sisson, S.A.1    Fan, Y.2
  • 45
    • 33646253426 scopus 로고    scopus 로고
    • A case for a reassessment of the risks of extreme hydrological hazards in the Caribbean
    • doi:10.1007/s00477-005-0246-4
    • Sisson, S., L. Pericchi, and S. Coles (2006), A case for a reassessment of the risks of extreme hydrological hazards in the Caribbean, Stochastic Environ. Res. Risk Assess., 20(4), 296-306, doi:10.1007/s00477-005-0246-4.
    • (2006) Stochastic Environ. Res. Risk Assess. , vol.20 , Issue.4 , pp. 296-306
    • Sisson, S.1    Pericchi, L.2    Coles, S.3
  • 47
    • 68949104874 scopus 로고    scopus 로고
    • Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain monte carlo techniques
    • doi:10.1029/2007WR006705
    • Smith, T. J., and L. A. Marshall (2008), Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques, Water Resour. Res., 44,W00B05, doi:10.1029/2007WR006705.
    • (2008) Water Resour. Res. , vol.44
    • Smith, T.J.1    Marshall, L.A.2
  • 48
    • 39749173002 scopus 로고    scopus 로고
    • Detection of structural inadequacy in process-based hydrological models: A particle-filtering approach
    • DOI 10.1029/2006WR005205
    • Smith, P. J., K. J. Beven, and J. A. Tawn (2008), Detection of structural inadequacy in process-based hydrological models: A particle-filtering approach, Water Resour. Res., 44, W01410, doi:10.1029/2006WR005205. (Pubitemid 351304135)
    • (2008) Water Resources Research , vol.44 , Issue.1
    • Smith, P.J.1    Beven, K.J.2    Tawn, J.A.3
  • 49
    • 0021034448 scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness
    • Sorooshian, S., and V. K. Gupta (1983), Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness, Water Resour. Res., 19(1), 260-268, doi:10.1029/ WR019i001p00260. (Pubitemid 14256110)
    • (1983) Water Resources Research , vol.19 , Issue.1 , pp. 260-268
    • Sorooshian, S.1    Gupta, V.K.2
  • 51
    • 1542757127 scopus 로고    scopus 로고
    • A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 52
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • DOI 10.1029/2004WR003059, W01017
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059. (Pubitemid 40359297)
    • (2005) Water Resources Research , vol.41 , Issue.1 , pp. 1-17
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 53
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • doi:10.1515/IJNSNS.2009.10.3.273
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul., 10(3), 273-290, doi:10.1515/IJNSNS.2009.10.3.273.
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , Issue.3 , pp. 273-290
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Diks, C.G.H.3    Robinson, B.A.4    Hyman, J.M.5    Higdon, D.6
  • 54
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • doi:10.1029/ 2005WR004093
    • Weerts, A. H., and G. Y. H. El Serafy (2006), Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, doi:10.1029/ 2005WR004093.
    • (2006) Water Resour. Res. , vol.42
    • Weerts, A.H.1    El Serafy, G.Y.H.2
  • 56
    • 70350214197 scopus 로고    scopus 로고
    • Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling
    • doi:10.1016/j.neunet. 2009.06.005
    • Yoon, J. W., S. J. Roberts, M. Dyson, and J. Q. Gan (2009), Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling, Neural Networks, 22(9), 1286-1294, doi:10.1016/j.neunet. 2009.06.005.
    • (2009) Neural Networks , vol.22 , Issue.9 , pp. 1286-1294
    • Yoon, J.W.1    Roberts, S.J.2    Dyson, M.3    Gan, J.Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.