메뉴 건너뛰기




Volumn 8, Issue 5, 2013, Pages

Passing Messages between Biological Networks to Refine Predicted Interactions

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; CELL TYPE; EUKARYOTE; GENE EXPRESSION; GENE INTERACTION; GENE REGULATORY NETWORK; GENE SEQUENCE; GENETIC ALGORITHM; GENETIC DATABASE; GENETIC REGULATION; GENOME; METHODOLOGY; PASSING ATTRIBUTES BETWEEN NETWORKS FOR DATA ASSIMILATION ALGORITHM; PREDICTION; PROTEIN BINDING; PROTEIN MOTIF; PROTEIN PROTEIN INTERACTION; SACCHAROMYCES CEREVISIAE; SYSTEMS BIOLOGY; TISSUE SPECIFICITY;

EID: 84878605343     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0064832     Document Type: Article
Times cited : (152)

References (65)
  • 1
    • 0037819447 scopus 로고    scopus 로고
    • Transcription regulation and animal diversity
    • Levine M, Tjian R, (2003) Transcription regulation and animal diversity. Nature 424: 147-151.
    • (2003) Nature , vol.424 , pp. 147-151
    • Levine, M.1    Tjian, R.2
  • 2
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5: e8.
    • (2007) PLoS Biol , vol.5
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5
  • 3
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7Suppl 1: S7.
    • (2006) BMC Bioinformatics , vol.7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 4
    • 79959327654 scopus 로고    scopus 로고
    • Structural influence of gene networks on their inference: analysis of C3NET
    • Altay G, Emmert-Streib F, (2011) Structural influence of gene networks on their inference: analysis of C3NET. Biol Direct 6: 31.
    • (2011) Biol Direct , vol.6 , pp. 31
    • Altay, G.1    Emmert-Streib, F.2
  • 5
    • 12344323554 scopus 로고    scopus 로고
    • SARGE: a tool for creation of putative genetic networks
    • Shaw OJ, Harwood C, Steggles LJ, Wipat A, (2004) SARGE: a tool for creation of putative genetic networks. Bioinformatics 20: 3638-3640.
    • (2004) Bioinformatics , vol.20 , pp. 3638-3640
    • Shaw, O.J.1    Harwood, C.2    Steggles, L.J.3    Wipat, A.4
  • 6
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K, (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8: 717-729.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 7
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • Hartemink AJ, (2005) Reverse engineering gene regulatory networks. Nat Biotechnol 23: 554-555.
    • (2005) Nat Biotechnol , vol.23 , pp. 554-555
    • Hartemink, A.J.1
  • 8
    • 58349093534 scopus 로고    scopus 로고
    • BNFinder: exact and efficient method for learning Bayesian networks
    • Wilczynski B, Dojer N, (2009) BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 25: 286-287.
    • (2009) Bioinformatics , vol.25 , pp. 286-287
    • Wilczynski, B.1    Dojer, N.2
  • 9
    • 84555190018 scopus 로고    scopus 로고
    • Modeling gene regulation networks using ordinary differential equations
    • Cao J, Qi X, Zhao H, (2012) Modeling gene regulation networks using ordinary differential equations. Methods Mol Biol 802: 185-197.
    • (2012) Methods Mol Biol , vol.802 , pp. 185-197
    • Cao, J.1    Qi, X.2    Zhao, H.3
  • 10
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput: 418-429.
    • (2000) Pac Symp Biocomput , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 13
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34: 166-176.
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5
  • 14
    • 77956308091 scopus 로고    scopus 로고
    • Module network inference from a cancer gene expression data set identifies microRNA regulated modules
    • Bonnet E, Tatari M, Joshi A, Michoel T, Marchal K, et al. (2010) Module network inference from a cancer gene expression data set identifies microRNA regulated modules. PLoS One 5: e10162.
    • (2010) PLoS One , vol.5
    • Bonnet, E.1    Tatari, M.2    Joshi, A.3    Michoel, T.4    Marchal, K.5
  • 16
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A, Bing N, Hoeschele I, Mendes P, (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20: 3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 17
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay G, Emmert-Streib F, (2010) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26: 1738-1744.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 18
    • 66449116353 scopus 로고    scopus 로고
    • Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
    • Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K, (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol 3: 49.
    • (2009) BMC Syst Biol , vol.3 , pp. 49
    • Michoel, T.1    De Smet, R.2    Joshi, A.3    Van de Peer, Y.4    Marchal, K.5
  • 19
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: from co-expression clustering to reverse engineering
    • D'Haeseleer P, Liang S, Somogyi R, (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 20
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • Guthke R, Moller U, Hoffmann M, Thies F, Topfer S, (2005) Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 21: 1626-1634.
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1    Moller, U.2    Hoffmann, M.3    Thies, F.4    Topfer, S.5
  • 21
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput: 437-449.
    • (2002) Pac Symp Biocomput , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 22
    • 19544364324 scopus 로고    scopus 로고
    • Selective integration of multiple biological data for supervised network inference
    • Kato T, Tsuda K, Asai K, (2005) Selective integration of multiple biological data for supervised network inference. Bioinformatics 21: 2488-2495.
    • (2005) Bioinformatics , vol.21 , pp. 2488-2495
    • Kato, T.1    Tsuda, K.2    Asai, K.3
  • 23
    • 77955039075 scopus 로고    scopus 로고
    • Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model
    • Youn A, Reiss DJ, Stuetzle W, (2010) Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics 26: 1879-1886.
    • (2010) Bioinformatics , vol.26 , pp. 1879-1886
    • Youn, A.1    Reiss, D.J.2    Stuetzle, W.3
  • 24
    • 84863537088 scopus 로고    scopus 로고
    • Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks
    • Marbach D, Roy S, Ay F, Meyer PE, Candeias R, et al. (2012) Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res 22: 1334-1349.
    • (2012) Genome Res , vol.22 , pp. 1334-1349
    • Marbach, D.1    Roy, S.2    Ay, F.3    Meyer, P.E.4    Candeias, R.5
  • 25
    • 34247556038 scopus 로고    scopus 로고
    • Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations
    • Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, et al. (2007) Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol 3: e69.
    • (2007) PLoS Comput Biol , vol.3
    • Zhu, J.1    Wiener, M.C.2    Zhang, C.3    Fridman, A.4    Minch, E.5
  • 26
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J, Zhang B, Smith EN, Drees B, Brem RB, et al. (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40: 854-861.
    • (2008) Nat Genet , vol.40 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3    Drees, B.4    Brem, R.B.5
  • 27
    • 79961191133 scopus 로고    scopus 로고
    • RIP: the regulatory interaction predictor-a machine learning-based approach for predicting target genes of transcription factors
    • Bauer T, Eils R, Konig R, (2011) RIP: the regulatory interaction predictor-a machine learning-based approach for predicting target genes of transcription factors. Bioinformatics 27: 2239-2247.
    • (2011) Bioinformatics , vol.27 , pp. 2239-2247
    • Bauer, T.1    Eils, R.2    Konig, R.3
  • 28
    • 64149104487 scopus 로고    scopus 로고
    • Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data
    • Vu TT, Vohradsky J, (2009) Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data. Genomics 93: 426-433.
    • (2009) Genomics , vol.93 , pp. 426-433
    • Vu, T.T.1    Vohradsky, J.2
  • 29
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-a review
    • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R, (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96: 86-103.
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 30
    • 0037453009 scopus 로고    scopus 로고
    • Integrating regulatory motif discovery and genome-wide expression analysis
    • Conlon EM, Liu XS, Lieb JD, Liu JS, (2003) Integrating regulatory motif discovery and genome-wide expression analysis. Proc Natl Acad Sci U S A 100: 3339-3344.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 3339-3344
    • Conlon, E.M.1    Liu, X.S.2    Lieb, J.D.3    Liu, J.S.4
  • 31
    • 46749127803 scopus 로고    scopus 로고
    • Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia
    • Chang LW, Payton JE, Yuan W, Ley TJ, Nagarajan R, et al. (2008) Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia. Genome Biol 9: R38.
    • (2008) Genome Biol , vol.9
    • Chang, L.W.1    Payton, J.E.2    Yuan, W.3    Ley, T.J.4    Nagarajan, R.5
  • 33
    • 79952266465 scopus 로고    scopus 로고
    • Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
    • Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, et al. (2011) Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res 21: 447-455.
    • (2011) Genome Res , vol.21 , pp. 447-455
    • Pique-Regi, R.1    Degner, J.F.2    Pai, A.A.3    Gaffney, D.J.4    Gilad, Y.5
  • 34
    • 84865739425 scopus 로고    scopus 로고
    • Architecture of the human regulatory network derived from ENCODE data
    • Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489: 91-100.
    • (2012) Nature , vol.489 , pp. 91-100
    • Gerstein, M.B.1    Kundaje, A.2    Hariharan, M.3    Landt, S.G.4    Yan, K.K.5
  • 37
    • 84874668051 scopus 로고    scopus 로고
    • Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach
    • Bailly-Bechet M, Braunstein A, Pagnani A, Weigt M, Zecchina R, (2010) Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach. BMC Bioinformatics 11: 355.
    • (2010) BMC Bioinformatics , vol.11 , pp. 355
    • Bailly-Bechet, M.1    Braunstein, A.2    Pagnani, A.3    Weigt, M.4    Zecchina, R.5
  • 38
    • 32644483897 scopus 로고    scopus 로고
    • Learning by message passing in networks of discrete synapses
    • Braunstein A, Zecchina R, (2006) Learning by message passing in networks of discrete synapses. Phys Rev Lett 96: 030201.
    • (2006) Phys Rev Lett , vol.96 , pp. 030201
    • Braunstein, A.1    Zecchina, R.2
  • 41
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey BJ, Dueck D, (2007) Clustering by passing messages between data points. Science 315: 972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 42
    • 37049239596 scopus 로고
    • A Computer Program for Classifying Plants
    • Rogers DJ, Tanimoto TT, (1960) A Computer Program for Classifying Plants. Science 132: 1115-1118.
    • (1960) Science , vol.132 , pp. 1115-1118
    • Rogers, D.J.1    Tanimoto, T.T.2
  • 43
    • 33747078457 scopus 로고    scopus 로고
    • Identifying transcription factor functions and targets by phenotypic activation
    • Chua G, Morris QD, Sopko R, Robinson MD, Ryan O, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103: 12045-12050.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 12045-12050
    • Chua, G.1    Morris, Q.D.2    Sopko, R.3    Robinson, M.D.4    Ryan, O.5
  • 44
    • 84878601250 scopus 로고    scopus 로고
    • Identifying transcription factor functions and targets by phenotypic activation. Available, Accessed 2011 Feb
    • Identifying transcription factor functions and targets by phenotypic activation. Available: hugheslab.ccbr.utoronto.ca/supplementary-data/yeastTF/Z_SCORES_FOR_106_EXPERIMENTS.xls. Accessed 2011 Feb.
  • 46
    • 84878548873 scopus 로고    scopus 로고
    • Fraenkel Lab MD Results - Regulatory Map formatted for spreadsheet import. Available, Accessed 2011 Jul
    • Fraenkel Lab MD Results - Regulatory Map formatted for spreadsheet import. Available: fraenkel.mit.edu/Harbison/release_v24/txtfiles/IGR_v24.nocons.nobind.zip. Accessed 2011 Jul.
  • 49
    • 84878548986 scopus 로고    scopus 로고
    • Binding Data on Motif Discovery Files for Harbison et. al. Available, Accessed 2011 Jul
    • Binding Data on Motif Discovery Files for Harbison et. al. Available: fraenkel.mit.edu/Harbison/release_v24/Harbison_Gordon_yeast_v9.11.csv.gz. Accessed 2011 Jul.
  • 50
    • 41849115550 scopus 로고    scopus 로고
    • A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
    • Ernst J, Beg QK, Kay KA, Balazsi G, Oltvai ZN, et al. (2008) A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput Biol 4: e1000044.
    • (2008) PLoS Comput Biol , vol.4
    • Ernst, J.1    Beg, Q.K.2    Kay, K.A.3    Balazsi, G.4    Oltvai, Z.N.5
  • 51
    • 84878533278 scopus 로고    scopus 로고
    • Periodic genes of the yeast Saccharomyces cerevisia: A combined analysis of five cell cycle data sets. Available, Accessed 2011 Mar
    • Periodic genes of the yeast Saccharomyces cerevisia: A combined analysis of five cell cycle data sets. Available: webapps.fhcrc.org/labs/noble/30.compilation.xls. Accessed 2011 Mar.
  • 52
    • 0036896774 scopus 로고    scopus 로고
    • Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle
    • Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL, (2002) Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev 16: 3034-3045.
    • (2002) Genes Dev , vol.16 , pp. 3034-3045
    • Pramila, T.1    Miles, S.2    GuhaThakurta, D.3    Jemiolo, D.4    Breeden, L.L.5
  • 53
    • 33747379083 scopus 로고    scopus 로고
    • The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle
    • Pramila T, Wu W, Miles S, Noble WS, Breeden LL, (2006) The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 20: 2266-2278.
    • (2006) Genes Dev , vol.20 , pp. 2266-2278
    • Pramila, T.1    Wu, W.2    Miles, S.3    Noble, W.S.4    Breeden, L.L.5
  • 54
    • 84878583011 scopus 로고    scopus 로고
    • Periodic genes of the yeast Saccharomyces cerevisia: A combined analysis of five cell cycle data sets. Available, Accessed 2011 Mar
    • Periodic genes of the yeast Saccharomyces cerevisia: A combined analysis of five cell cycle data sets. Available: webapps.fhcrc.org/labs/noble/38.compilation.xls. Accessed 2011 Mar.
  • 55
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257.
    • (2000) Mol Biol Cell , vol.11 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3    Carmel-Harel, O.4    Eisen, M.B.5
  • 56
    • 84878600804 scopus 로고    scopus 로고
    • Genomic Responses of Yeast to Diverse Stress Conditions. Available:. Accessed 2011 Mar
    • Genomic Responses of Yeast to Diverse Stress Conditions. Available: http://genome-www.stanford.edu/yeast_stress/data/rawdata/complete_dataset.txt. Accessed 2011 Mar.
  • 57
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang da W, Sherman BT, Lempicki RA, (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57.
    • (2009) Nat Protoc , vol.4 , pp. 44-57
    • Huang da, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 58
    • 0027501142 scopus 로고
    • A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase
    • Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K, (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261: 1551-1557.
    • (1993) Science , vol.261 , pp. 1551-1557
    • Koch, C.1    Moll, T.2    Neuberg, M.3    Ahorn, H.4    Nasmyth, K.5
  • 59
    • 0028292454 scopus 로고
    • Cell cycle regulated transcription in yeast
    • Koch C, Nasmyth K, (1994) Cell cycle regulated transcription in yeast. Curr Opin Cell Biol 6: 451-459.
    • (1994) Curr Opin Cell Biol , vol.6 , pp. 451-459
    • Koch, C.1    Nasmyth, K.2
  • 60
    • 0034825082 scopus 로고    scopus 로고
    • SUT1 is a putative Zn[II]2Cys6-transcription factor whose upregulation enhances both sterol uptake and synthesis in aerobically growing Saccharomyces cerevisiae cells
    • Ness F, Bourot S, Regnacq M, Spagnoli R, Berges T, et al. (2001) SUT1 is a putative Zn[II]2Cys6-transcription factor whose upregulation enhances both sterol uptake and synthesis in aerobically growing Saccharomyces cerevisiae cells. Eur J Biochem 268: 1585-1595.
    • (2001) Eur J Biochem , vol.268 , pp. 1585-1595
    • Ness, F.1    Bourot, S.2    Regnacq, M.3    Spagnoli, R.4    Berges, T.5
  • 61
    • 0029954321 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6
    • Siegmund RF, Nasmyth KA, (1996) The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol Cell Biol 16: 2647-2655.
    • (1996) Mol Cell Biol , vol.16 , pp. 2647-2655
    • Siegmund, R.F.1    Nasmyth, K.A.2
  • 62
    • 33747017731 scopus 로고    scopus 로고
    • Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback
    • de Bruin RA, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, et al. (2006) Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell 23: 483-496.
    • (2006) Mol Cell , vol.23 , pp. 483-496
    • de Bruin, R.A.1    Kalashnikova, T.I.2    Chahwan, C.3    McDonald, W.H.4    Wohlschlegel, J.5
  • 63
    • 55549092781 scopus 로고    scopus 로고
    • Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast
    • Hasegawa Y, Irie K, Gerber AP, (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14: 2333-2347.
    • (2008) RNA , vol.14 , pp. 2333-2347
    • Hasegawa, Y.1    Irie, K.2    Gerber, A.P.3
  • 64
    • 80055081144 scopus 로고    scopus 로고
    • Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation
    • Mihalik A, Csermely P, (2011) Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation. PLoS Comput Biol 7: e1002187.
    • (2011) PLoS Comput Biol , vol.7
    • Mihalik, A.1    Csermely, P.2
  • 65
    • 0030003064 scopus 로고    scopus 로고
    • Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae
    • Schmitt AP, McEntee K, (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5777-5782.
    • (1996) Proc Natl Acad Sci U S A , vol.93 , pp. 5777-5782
    • Schmitt, A.P.1    McEntee, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.