메뉴 건너뛰기




Volumn 40, Issue 13, 2013, Pages 5197-5209

Adaptive neuro-fuzzy wheel slip control

Author keywords

Commercial vehicles; Intelligent braking; Neuro fuzzy control; Wheel slip

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; AUTOMOBILES; BRAKES; BRAKING; COMMERCIAL VEHICLES; COMPLEX NETWORKS; FORECASTING; FRICTION; FUZZY CONTROL; FUZZY INFERENCE; FUZZY LOGIC; LONGITUDINAL CONTROL; MANEUVERABILITY; NEURAL NETWORKS; ROADS AND STREETS; THREE TERM CONTROL SYSTEMS; TRANSPORTATION; VEHICLE WHEELS; VEHICLES; WHEELS;

EID: 84878331996     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.03.012     Document Type: Article
Times cited : (33)

References (41)
  • 1
    • 71949087973 scopus 로고    scopus 로고
    • Neural network prediction of brake friction materials wear
    • Aleksendrić , D. (2010). Neural network prediction of brake friction materials wear. Wear, 268, 117-125.
    • (2010) Wear , vol.268 , pp. 117-125
    • Aleksendrić, D.1
  • 2
    • 67349257795 scopus 로고    scopus 로고
    • Neural network prediction of disk brake performance
    • Aleksendrić , D., & Barton, D. C. (2009). Neural network prediction of disk brake performance. Tribology International, 42, 1074-1080.
    • (2009) Tribology International , vol.42 , pp. 1074-1080
    • Aleksendrić, D.1    Barton, D.C.2
  • 3
    • 77956184776 scopus 로고    scopus 로고
    • Prediction of brake friction materials recovery performance using artificial neural networks
    • Aleksendrić , D., Barton, D. C., & Vasić , B. (2010). Prediction of brake friction materials recovery performance using artificial neural networks. Tribology International, 43, 2092-2099.
    • (2010) Tribology International , vol.43 , pp. 2092-2099
    • Aleksendrić, D.1    Barton, D.C.2    Vasić, B.3
  • 8
    • 0037335434 scopus 로고    scopus 로고
    • Intelligent optimal control with dynamic neural networks
    • DOI 10.1016/S0893-6080(02)00232-0, PII S0893608002002320
    • Becerikli, Y., Konar, A. F., & Samad, T. (2003). Intelligent optimal control with dynamic neural networks. Neural Networks, 16, 251-259. (Pubitemid 36293558)
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 251-259
    • Becerikli, Y.1    Konar, A.F.2    Samad, T.3
  • 10
    • 42949143657 scopus 로고    scopus 로고
    • A simplified ABS numerical model: Comparison with HIL and full scale experimental tests
    • DOI 10.1016/j.compstruc.2007.07.010, PII S004579490700243X
    • Cheli, F., Concas, A., Giangiulio, E., & Sabbioni, E. (2008). A simplified ABS numerical model: Comparison with HIL and full scale experimental tests. Computers & Structures, 86, 1494-1502. (Pubitemid 351609091)
    • (2008) Computers and Structures , vol.86 , Issue.13-14 , pp. 1494-1502
    • Cheli, F.1    Concas, A.2    Giangiulio, E.3    Sabbioni, E.4
  • 14
    • 84901840227 scopus 로고    scopus 로고
    • Longitudinal wheel slip control using dynamic neural networks
    • Ćirović V., Aleksendrić , D., & Smiljanić , D. (2013). Longitudinal wheel slip control using dynamic neural networks. Mechatronics, 23, 135-146.
    • (2013) Mechatronics , vol.23 , pp. 135-146
    • Cirović, V.C.1    Aleksendrić, D.2    Smiljanić, D.3
  • 16
    • 84892314756 scopus 로고    scopus 로고
    • Neural networks -Methodology and applications
    • Dreyfus, G. (2005). Neural networks -Methodology and applications. Berlin: Springer.
    • (2005) Berlin: Springer
    • Dreyfus, G.1
  • 17
    • 77950516476 scopus 로고    scopus 로고
    • Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control
    • Han, S. I., & Lee, K. S. (2010). Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control. Mechatronics, 20, 384-401.
    • (2010) Mechatronics , vol.20 , pp. 384-401
    • Han, S.I.1    Lee, K.S.2
  • 18
    • 68349098965 scopus 로고    scopus 로고
    • Precise friction control for the nonlinear friction system using the friction state observer and sliding mode control with recurrent fuzzy neural networks
    • Kim, H. M., Park, S. H., & Han, S. I. (2009). Precise friction control for the nonlinear friction system using the friction state observer and sliding mode control with recurrent fuzzy neural networks. Mechatronics, 19, 805-815.
    • (2009) Mechatronics , vol.19 , pp. 805-815
    • Kim, H.M.1    Park, S.H.2    Han, S.I.3
  • 20
    • 38649143614 scopus 로고    scopus 로고
    • Prediction of vehicle reliability performance using artificial neural networks
    • DOI 10.1016/j.eswa.2007.03.014, PII S0957417407001297
    • Lolas, S., & Olatunbosun, O. A. (2008). Prediction of vehicle reliability performance using artificial neural networks. Expert Systems with Applications, 34, 2360-2369. (Pubitemid 351173747)
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2360-2369
    • Lolas, S.1    Olatunbosun, O.A.2
  • 21
    • 43549106152 scopus 로고    scopus 로고
    • Neural network based tire/road friction force estimation
    • DOI 10.1016/j.engappai.2007.05.001, PII S0952197607000589
    • Matusko, J., Petrovic, I., & Peric, N. (2008). Neural network based tire/road friction force estimation. Engineering Applications of Artificial Intelligence, 21, 442-456. (Pubitemid 351680680)
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.3 , pp. 442-456
    • Matusko, J.1    Petrovic, I.2    Peric, N.3
  • 22
    • 33846815388 scopus 로고    scopus 로고
    • Modelling and estimation of tire-road longitudinal impact efforts using bond graph approach
    • DOI 10.1016/j.mechatronics.2006.11.001, PII S0957415806001164
    • Merzouki, R., Ould-Bouamama, B., Djeziri, M. A., & Bouteldja, M. (2007). Modelling and estimation of tire-road longitudinal impact efforts using bond graph approach. Mechatronics, 17, 93-108. (Pubitemid 46210048)
    • (2007) Mechatronics , vol.17 , Issue.2-3 , pp. 93-108
    • Merzouki, R.1    Ould-Bouamama, B.2    Djeziri, M.A.3    Bouteldja, M.4
  • 26
    • 77950332130 scopus 로고    scopus 로고
    • An empirical study of the effectiveness of electronic stability control system in reducing loss of vehicle control
    • Papelis, Y. E., Watson, G. S., & Brown, T. L. (2010). An empirical study of the effectiveness of electronic stability control system in reducing loss of vehicle control. Accident Analysis & Prevention, 42, 929-934.
    • (2010) Accident Analysis & Prevention , vol.42 , pp. 929-934
    • Papelis, Y.E.1    Watson, G.S.2    Brown, T.L.3
  • 27
    • 70449521179 scopus 로고    scopus 로고
    • A neural network approach to target classification for active safety system using microwave radar
    • Park, S., Hwang, J. P., Kim, E., Lee, H., & Gi Jung, H. (2010). A neural network approach to target classification for active safety system using microwave radar. Expert Systems with Applications, 37, 2340-2346.
    • (2010) Expert Systems with Applications , vol.37 , pp. 2340-2346
    • Park, S.1    Hwang, J.P.2    Kim, E.3    Lee, H.4    Gi Jung, H.5
  • 31
    • 67349257989 scopus 로고    scopus 로고
    • Adaptive feedback linearization control of antilock braking systems using neural networks
    • Poursamad, A. (2009). Adaptive feedback linearization control of antilock braking systems using neural networks. Mechatronics, 19, 767-773.
    • (2009) Mechatronics , vol.19 , pp. 767-773
    • Poursamad, A.1
  • 32
    • 81855183678 scopus 로고    scopus 로고
    • Experimental results of model-based fuzzy control solutions for a laboratory antilock braking system
    • In Z. S. Hippe, J. L Kulikowski, & T. Mroczek (Eds.). Springer-Verlag, AICS
    • Precup, R. E. et al. (2012). Experimental results of model-based fuzzy control solutions for a laboratory antilock braking system. In Z. S. Hippe, J. L. Kulikowski, & T. Mroczek (Eds.). Human-computer systems interaction: Backgrounds and applications 2, Part 2 (Vol. 99, pp. 223-234). Springer-Verlag, AICS.
    • (2012) Human-computer Systems Interaction: Backgrounds and Applications 2, Part 2 , vol.99 , pp. 223-234
    • Precup, R.E.1
  • 37
    • 79956045293 scopus 로고    scopus 로고
    • Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm
    • Topalov, A. V., Oniz, Y., Kayacan, E., & Kaynak, O. (2011). Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputing, 74, 1883-1893.
    • (2011) Neurocomputing , vol.74 , pp. 1883-1893
    • Topalov, A.V.1    Oniz, Y.2    Kayacan, E.3    Kaynak, O.4
  • 38
    • 84864476803 scopus 로고    scopus 로고
    • Hierarchical T-S fuzzy-neural control of anti-lock braking system and active suspension in a vehicle
    • Wang, W. Y., Chen, M. C., & Su, S. F. (2012). Hierarchical T-S fuzzy-neural control of anti-lock braking system and active suspension in a vehicle. Automatica, 48, 1698-1706.
    • (2012) Automatica , vol.48 , pp. 1698-1706
    • Wang, W.Y.1    Chen, M.C.2    Su, S.F.3
  • 39
    • 0037401740 scopus 로고    scopus 로고
    • Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control
    • Wu, M., & Shih, M. (2003). Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control. Mechatronics, 13, 331-351.
    • (2003) Mechatronics , vol.13 , pp. 331-351
    • Wu, M.1    Shih, M.2
  • 41
    • 33747751845 scopus 로고    scopus 로고
    • Controller design for vehicle stability enhancement
    • DOI 10.1016/j.conengprac.2005.10.005, PII S0967066105002406
    • Zheng, S., Tang, H., Han, Z., & Zhang, Y. (2006). Controller design for vehicle stability enhancement. Control Engineering Practice, 14, 1413-1421. (Pubitemid 44276234)
    • (2006) Control Engineering Practice , vol.14 , Issue.12 , pp. 1413-1421
    • Zheng, S.1    Tang, H.2    Han, Z.3    Zhang, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.