메뉴 건너뛰기




Volumn 46, Issue 3, 2013, Pages 563-573

Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role

Author keywords

Gene regulatory networks; Machine learning; MicroRNA genes; MiRNA gene prediction; MiRNA identification; MiRNA transcription mechanism

Indexed keywords

COMPUTATIONAL APPROACH; COMPUTATIONAL ISSUES; COMPUTATIONAL TECHNIQUE; EXPERIMENTAL TECHNIQUES; GENE PREDICTION; GENE REGULATORY NETWORKS; MICRORNAS; TRANSCRIPTION MECHANISM;

EID: 84878213539     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2013.02.002     Document Type: Review
Times cited : (41)

References (90)
  • 1
    • 84863495094 scopus 로고    scopus 로고
    • The hallmarks of cancer: a long non-coding RNA point of view
    • Gutschner T., Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012, 9.
    • (2012) RNA Biol , vol.9
    • Gutschner, T.1    Diederichs, S.2
  • 2
    • 0344232733 scopus 로고    scopus 로고
    • MicroRNAs: runts of the genome assert themselves
    • Lai E.C. MicroRNAs: runts of the genome assert themselves. Curr Biol 2003, 13:925-936.
    • (2003) Curr Biol , vol.13 , pp. 925-936
    • Lai, E.C.1
  • 3
    • 33751250183 scopus 로고    scopus 로고
    • Computational identification of microRNAs and their targets
    • Zhang B., Pan X., Wang Q., et al. Computational identification of microRNAs and their targets. Comput Biol Chem 2006, 30:395-407.
    • (2006) Comput Biol Chem , vol.30 , pp. 395-407
    • Zhang, B.1    Pan, X.2    Wang, Q.3
  • 4
    • 63049136932 scopus 로고    scopus 로고
    • A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification
    • Yousef M., Showe L., Showe M. A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification. FEBS J 2009, 276:2150-2156.
    • (2009) FEBS J , vol.276 , pp. 2150-2156
    • Yousef, M.1    Showe, L.2    Showe, M.3
  • 6
    • 77954517267 scopus 로고    scopus 로고
    • MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems
    • Herranz H., Cohen S. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 2010, 24:1339-1344.
    • (2010) Genes Dev , vol.24 , pp. 1339-1344
    • Herranz, H.1    Cohen, S.2
  • 7
    • 0038054470 scopus 로고    scopus 로고
    • Computational and experimental identification of C. elegans microRNAs
    • Grad Y., Aach J., Hayes G.D., et al. Computational and experimental identification of C. elegans microRNAs. Mol Cell 2003, 11:1253-1263.
    • (2003) Mol Cell , vol.11 , pp. 1253-1263
    • Grad, Y.1    Aach, J.2    Hayes, G.D.3
  • 8
    • 22344449952 scopus 로고    scopus 로고
    • The developmental miRNA profiles of zebrafish as determined by small RNA cloning
    • Chen P.Y., Manninga H., Slanchev K., et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 2005, 19:1288-1293.
    • (2005) Genes Dev , vol.19 , pp. 1288-1293
    • Chen, P.Y.1    Manninga, H.2    Slanchev, K.3
  • 9
    • 34249003938 scopus 로고    scopus 로고
    • Principles and limitations of computational microRNA gene and target finding
    • Lindow M., Gorodkin J. Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol 2007, 26:339-351.
    • (2007) DNA Cell Biol , vol.26 , pp. 339-351
    • Lindow, M.1    Gorodkin, J.2
  • 10
    • 65849520676 scopus 로고    scopus 로고
    • Current tools for the identification of miRNA genes and their targets
    • Mendes N.D., Freitas A.T., Sagot M.F. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 2009, 37:2419-2433.
    • (2009) Nucleic Acids Res , vol.37 , pp. 2419-2433
    • Mendes, N.D.1    Freitas, A.T.2    Sagot, M.F.3
  • 11
    • 77949268292 scopus 로고    scopus 로고
    • Computational approaches for microRNA studies: a review
    • Li L., Xu J., Yang D., et al. Computational approaches for microRNA studies: a review. Mamm Genome 2010, 21:1-12.
    • (2010) Mamm Genome , vol.21 , pp. 1-12
    • Li, L.1    Xu, J.2    Yang, D.3
  • 12
    • 22844440427 scopus 로고    scopus 로고
    • Identification of hundreds of conserved and nonconserved human microRNAs
    • Bentwich I., Avniel A., Karov Y., et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005, 37:766-770.
    • (2005) Nat Genet , vol.37 , pp. 766-770
    • Bentwich, I.1    Avniel, A.2    Karov, Y.3
  • 13
    • 0037447334 scopus 로고    scopus 로고
    • The microRNAs of Caenorhabditis elegans
    • Lim L.P., Lau N.C., Weinstein E.G., et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003, 17:991-1008.
    • (2003) Genes Dev , vol.17 , pp. 991-1008
    • Lim, L.P.1    Lau, N.C.2    Weinstein, E.G.3
  • 14
    • 0038825783 scopus 로고    scopus 로고
    • Computational identification of Drosophila microRNA genes
    • Lai E.C., Tomancak P., Williams R.W., et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003, 4:R42.
    • (2003) Genome Biol , vol.4
    • Lai, E.C.1    Tomancak, P.2    Williams, R.W.3
  • 15
    • 12744261466 scopus 로고    scopus 로고
    • Computational prediction of miRNAs in Arabidopsis thaliana
    • Adai A., Johnson C., Mlotshwa S., et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 2005, 15:78-91.
    • (2005) Genome Res , vol.15 , pp. 78-91
    • Adai, A.1    Johnson, C.2    Mlotshwa, S.3
  • 16
    • 32144438833 scopus 로고    scopus 로고
    • Identification of plant microRNA homologs
    • Dezulian T., Remmert M., Palatnik J.F., et al. Identification of plant microRNA homologs. Bioinformatics 2006, 22:359-360.
    • (2006) Bioinformatics , vol.22 , pp. 359-360
    • Dezulian, T.1    Remmert, M.2    Palatnik, J.F.3
  • 17
    • 24644476482 scopus 로고    scopus 로고
    • MicroRNA identification based on sequence and structure alignment
    • Wang X., Zhang J., Li F., et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics 2005, 21:3610-3614.
    • (2005) Bioinformatics , vol.21 , pp. 3610-3614
    • Wang, X.1    Zhang, J.2    Li, F.3
  • 18
    • 2942672580 scopus 로고    scopus 로고
    • Computational identification of plant microRNAs and their targets, including a stress-induced miRNA
    • Jones-Rhoades M.W., Bartel D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14:787-799.
    • (2004) Mol Cell , vol.14 , pp. 787-799
    • Jones-Rhoades, M.W.1    Bartel, D.P.2
  • 19
    • 33751548288 scopus 로고    scopus 로고
    • Diversity of microRNAs in human and chimpanzee brain
    • Berezikov E., Thuemmler F., van Laake L.W., et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006, 38:1375-1377.
    • (2006) Nat Genet , vol.38 , pp. 1375-1377
    • Berezikov, E.1    Thuemmler, F.2    van Laake, L.W.3
  • 20
    • 33745249539 scopus 로고    scopus 로고
    • Viruses and microRNAs. Nat Genet
    • Cullen BR. Viruses and microRNAs. Nat Genet 38(Suppl.):S25-30.
    • , vol.38 , Issue.SUPPL. , pp. 25-30
    • Cullen, B.R.1
  • 21
    • 30344447264 scopus 로고    scopus 로고
    • Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine
    • Xue C., Li F., He T., et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005, 6:310.
    • (2005) BMC Bioinformatics , vol.6 , pp. 310
    • Xue, C.1    Li, F.2    He, T.3
  • 22
    • 27844508214 scopus 로고    scopus 로고
    • Identification of clustered microRNAs using an ab initio prediction method
    • Sewer A., Paul N., Landgraf P., et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 2005, 6:267.
    • (2005) BMC Bioinformatics , vol.6 , pp. 267
    • Sewer, A.1    Paul, N.2    Landgraf, P.3
  • 24
    • 33747871855 scopus 로고    scopus 로고
    • Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data
    • Hertel J., Stadler P.F. Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 2006, 22:197-202.
    • (2006) Bioinformatics , vol.22 , pp. 197-202
    • Hertel, J.1    Stadler, P.F.2
  • 25
    • 34447309058 scopus 로고    scopus 로고
    • De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
    • Ng K.L.S., Mishra S.K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 2007, 23:1321-1330.
    • (2007) Bioinformatics , vol.23 , pp. 1321-1330
    • Ng, K.L.S.1    Mishra, S.K.2
  • 26
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction
    • Batuwita R., Palade V. MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009, 25:989-995.
    • (2009) Bioinformatics , vol.25 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 27
    • 33646358186 scopus 로고    scopus 로고
    • The application of support vector machines to medical decision support: a case study
    • Veropoulos K., Cristianini N., Campbell C. The application of support vector machines to medical decision support: a case study. ACAI 1999.
    • (1999) ACAI
    • Veropoulos, K.1    Cristianini, N.2    Campbell, C.3
  • 28
    • 38349097919 scopus 로고    scopus 로고
    • MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans
    • Huang T.H., Fan B., Rothschild M.F., et al. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 2007, 8:341.
    • (2007) BMC Bioinformatics , vol.8 , pp. 341
    • Huang, T.H.1    Fan, B.2    Rothschild, M.F.3
  • 30
    • 79955779744 scopus 로고    scopus 로고
    • PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs
    • Xuan P., Guo M., Liu X., et al. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 2011, 27:1368-1376.
    • (2011) Bioinformatics , vol.27 , pp. 1368-1376
    • Xuan, P.1    Guo, M.2    Liu, X.3
  • 31
    • 79955757907 scopus 로고    scopus 로고
    • Prediction of novel pre-microRNAs with high accuracy through boosting and SVM
    • Zhang Y., Yang Y., Zhang H., et al. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM. Bioinformatics 2011, 27:1436-1437.
    • (2011) Bioinformatics , vol.27 , pp. 1436-1437
    • Zhang, Y.1    Yang, Y.2    Zhang, H.3
  • 32
    • 21844477027 scopus 로고    scopus 로고
    • Human microRNA prediction through a probabilistic co-learning model of sequence and structure
    • Nam J.M., Shin K.R., Han J., et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res 2005, 33:3570-3581.
    • (2005) Nucleic Acids Res , vol.33 , pp. 3570-3581
    • Nam, J.M.1    Shin, K.R.2    Han, J.3
  • 33
    • 75149197426 scopus 로고    scopus 로고
    • Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM)
    • Agarwal S., Vaz C., Bhattacharya A., et al. Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinformatics 2010, 11(Suppl. 1):S29.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Agarwal, S.1    Vaz, C.2    Bhattacharya, A.3
  • 34
    • 60849085436 scopus 로고    scopus 로고
    • HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models
    • Kadri S., Hinman V., Benos P.V. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 2009, 10(Suppl. 1):S35.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Kadri, S.1    Hinman, V.2    Benos, P.V.3
  • 35
    • 33745594057 scopus 로고    scopus 로고
    • Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier
    • Yousef M., Nebozhyn M., Shatkay H., et al. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 2006, 22:1325-1334.
    • (2006) Bioinformatics , vol.22 , pp. 1325-1334
    • Yousef, M.1    Nebozhyn, M.2    Shatkay, H.3
  • 36
    • 57649207899 scopus 로고    scopus 로고
    • Using a kernel density estimation based classifier to predict species-specific microRNA precursors
    • Chang D.T.H., Wang C.C., Chen J.W. Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 2008, 9(Suppl. 12):S2.
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 12
    • Chang, D.T.H.1    Wang, C.C.2    Chen, J.W.3
  • 37
    • 46249127789 scopus 로고    scopus 로고
    • MicroRNA prediction with a novel ranking algorithm based on random walks
    • Xu Y., Zhou X., Zhang W. MicroRNA prediction with a novel ranking algorithm based on random walks. Bioinformatics 2008, 24:i50-i58.
    • (2008) Bioinformatics , vol.24
    • Xu, Y.1    Zhou, X.2    Zhang, W.3
  • 38
    • 75149198083 scopus 로고    scopus 로고
    • Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm
    • Hsieh C.H., Chang D.T.H., Hsueh C.H., et al. Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm. BMC Bioinformatics 2010, 11(Suppl. 1):S52.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Hsieh, C.H.1    Chang, D.T.H.2    Hsueh, C.H.3
  • 39
    • 79955948344 scopus 로고    scopus 로고
    • Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure
    • Xiao J., Tang X., Li Y., et al. Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure. BMC Bioinformatics 2011, 12:165.
    • (2011) BMC Bioinformatics , vol.12 , pp. 165
    • Xiao, J.1    Tang, X.2    Li, Y.3
  • 41
    • 57049175013 scopus 로고    scopus 로고
    • Detecting microRNA binding and siRNA off-target effects from expression data
    • van Dongen S., Abreu-Goodger C., Enright A.J. Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 2008, 5:1023-1025.
    • (2008) Nat Methods , vol.5 , pp. 1023-1025
    • van Dongen, S.1    Abreu-Goodger, C.2    Enright, A.J.3
  • 42
    • 79958033251 scopus 로고    scopus 로고
    • MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences
    • Wu Y., Wei B., Liu H., et al. MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 2011, 12:107.
    • (2011) BMC Bioinformatics , vol.12 , pp. 107
    • Wu, Y.1    Wei, B.2    Liu, H.3
  • 43
    • 77954304695 scopus 로고    scopus 로고
    • DSAP: deep-sequencing small RNA analysis pipeline
    • Huang P.J., Liu Y.C., Lee C.C., et al. DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 2010, 38:W385-W391.
    • (2010) Nucleic Acids Res , vol.38
    • Huang, P.J.1    Liu, Y.C.2    Lee, C.C.3
  • 44
    • 41849084855 scopus 로고    scopus 로고
    • Discovering microRNAs from deep sequencing data using miRDeep
    • Friedlander M.R., Chen W., Adamidi C., et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008, 26:407-415.
    • (2008) Nat Biotechnol , vol.26 , pp. 407-415
    • Friedlander, M.R.1    Chen, W.2    Adamidi, C.3
  • 45
    • 84855293838 scopus 로고    scopus 로고
    • MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades
    • Friedländer M.R., Mackowiak S.D., Li N., et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2011.
    • (2011) Nucleic Acids Res.
    • Friedländer, M.R.1    Mackowiak, S.D.2    Li, N.3
  • 46
    • 80052701585 scopus 로고    scopus 로고
    • MiRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants
    • Yang X., Li L. MiRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 2011, 27:2614-2615.
    • (2011) Bioinformatics , vol.27 , pp. 2614-2615
    • Yang, X.1    Li, L.2
  • 47
    • 67849114241 scopus 로고    scopus 로고
    • MiRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments
    • Hackenberg M., Sturm M., Langenberger D., et al. MiRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 2009, 37:68-76.
    • (2009) Nucleic Acids Res , vol.37 , pp. 68-76
    • Hackenberg, M.1    Sturm, M.2    Langenberger, D.3
  • 48
    • 77956508095 scopus 로고    scopus 로고
    • MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data
    • Mathelier A., Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 2010, 26:2226-2234.
    • (2010) Bioinformatics , vol.26 , pp. 2226-2234
    • Mathelier, A.1    Carbone, A.2
  • 49
  • 50
    • 77952840905 scopus 로고    scopus 로고
    • MicroRNAs targeting and target prediction
    • Saito T., Saetrom P. MicroRNAs targeting and target prediction. New Biotechnol 2010, 27(3):243-249.
    • (2010) New Biotechnol , vol.27 , Issue.3 , pp. 243-249
    • Saito, T.1    Saetrom, P.2
  • 51
    • 77951953262 scopus 로고    scopus 로고
    • Got target?: computational methods for microRNA target prediction and their extension
    • Min H., Yoon S. Got target?: computational methods for microRNA target prediction and their extension. Exp Mol Med 2010, 42(4):233-244.
    • (2010) Exp Mol Med , vol.42 , Issue.4 , pp. 233-244
    • Min, H.1    Yoon, S.2
  • 52
    • 4243170045 scopus 로고    scopus 로고
    • Identification of Drosophila MicroRNA targets
    • Stark A., Brennecke J., Russell R.B., et al. Identification of Drosophila MicroRNA targets. PLoS Biol 2003, 1:E60.
    • (2003) PLoS Biol , vol.1
    • Stark, A.1    Brennecke, J.2    Russell, R.B.3
  • 54
    • 0346094457 scopus 로고    scopus 로고
    • Prediction of mammalian MicroRNA targets
    • Lewis B.P., Shih I., Jones-Rhoades M.W., et al. Prediction of mammalian MicroRNA targets. Cell 2003, 115(7):787-798.
    • (2003) Cell , vol.115 , Issue.7 , pp. 787-798
    • Lewis, B.P.1    Shih, I.2    Jones-Rhoades, M.W.3
  • 55
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
    • (2005) Cell , vol.120 , Issue.1 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 56
    • 2442672918 scopus 로고    scopus 로고
    • A combined computational-experimental approach predicts human microRNA targets
    • Kiriakidou M., Nelson P.T., Kouranov A., et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004, 18(10):1165-1178.
    • (2004) Genes Dev , vol.18 , Issue.10 , pp. 1165-1178
    • Kiriakidou, M.1    Nelson, P.T.2    Kouranov, A.3
  • 57
    • 4644237189 scopus 로고    scopus 로고
    • Fast and effective prediction of microRNA/target duplexes
    • Rehmsmeier M., Steffen P., Hochsmann M., et al. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10(10):1507-1517.
    • (2004) RNA , vol.10 , Issue.10 , pp. 1507-1517
    • Rehmsmeier, M.1    Steffen, P.2    Hochsmann, M.3
  • 58
    • 50849141708 scopus 로고    scopus 로고
    • MirWIP: microRNA target prediction based on miRNP enriched transcripts
    • Hammell M., Long D., Zhang L., et al. MirWIP: microRNA target prediction based on miRNP enriched transcripts. Nat Methods 2008, 5(9):813-819.
    • (2008) Nat Methods , vol.5 , Issue.9 , pp. 813-819
    • Hammell, M.1    Long, D.2    Zhang, L.3
  • 59
    • 61849143920 scopus 로고    scopus 로고
    • MicroRNA target prediction by expression analysis of host genes
    • Gennarino V.A., Sardiello M., Avellino R., et al. MicroRNA target prediction by expression analysis of host genes. Genome Res 2009, 19(3):490-491.
    • (2009) Genome Res , vol.19 , Issue.3 , pp. 490-491
    • Gennarino, V.A.1    Sardiello, M.2    Avellino, R.3
  • 60
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A., Grãin D., Poy M.N., et al. Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
    • (2005) Nat Genet , vol.37 , Issue.5 , pp. 495-500
    • Krek, A.1    Grãin, D.2    Poy, M.N.3
  • 61
    • 79959805164 scopus 로고    scopus 로고
    • MiRWalk - database: prediction of possible miRNA binding sites by " walking" the genes of three genomes
    • Dweep H., Sticht C., Pandey P., Gretz N. MiRWalk - database: prediction of possible miRNA binding sites by " walking" the genes of three genomes. J Biomed Inform 2011, 44:839-847.
    • (2011) J Biomed Inform , vol.44 , pp. 839-847
    • Dweep, H.1    Sticht, C.2    Pandey, P.3    Gretz, N.4
  • 62
    • 84870829245 scopus 로고    scopus 로고
    • Interactive exploration of RNA22 microRNA target predictions
    • Loher Phillipe, Rigoutsos Isidore Interactive exploration of RNA22 microRNA target predictions. Bioinform Appl Note 2012, 28(24):3322-3323.
    • (2012) Bioinform Appl Note , vol.28 , Issue.24 , pp. 3322-3323
    • Loher, P.1    Rigoutsos, I.2
  • 63
    • 33947424813 scopus 로고    scopus 로고
    • MicroTar: predicting microRNA targets from RNA duplexes
    • Thadani R., Tammi M.T. MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 2006, 7:S20.
    • (2006) BMC Bioinformatics , vol.7
    • Thadani, R.1    Tammi, M.T.2
  • 64
    • 34347398567 scopus 로고    scopus 로고
    • Inference of miRNA targets using evolutionary conservation and pathway analysis
    • Gaidatzis D., van Nimwegen E., Hausser J., et al. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007, 8:69.
    • (2007) BMC Bioinformatics , vol.8 , pp. 69
    • Gaidatzis, D.1    van Nimwegen, E.2    Hausser, J.3
  • 65
    • 67849116900 scopus 로고    scopus 로고
    • MirZ: an integrated microRNA expression atlas and target prediction resource
    • Hausser J., Berninger P., Rodak C., et al. MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 2009, 37:W266-W272.
    • (2009) Nucleic Acids Res , vol.37
    • Hausser, J.1    Berninger, P.2    Rodak, C.3
  • 66
    • 36749005527 scopus 로고    scopus 로고
    • Using expression profiling data to identify human microRNA targets
    • Huang J.C., Babak T., Corson T.W., et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007, 4:1045-1049.
    • (2007) Nat Methods , vol.4 , pp. 1045-1049
    • Huang, J.C.1    Babak, T.2    Corson, T.W.3
  • 67
    • 75149129669 scopus 로고    scopus 로고
    • MTar: a computational microRNA target prediction architecture for human transcriptome
    • Chandra V., Girijadevi R., Nair A.S., et al. MTar: a computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics 2010, 11:S2.
    • (2010) BMC Bioinformatics , vol.11
    • Chandra, V.1    Girijadevi, R.2    Nair, A.S.3
  • 68
    • 33749645474 scopus 로고    scopus 로고
    • MiTarget: microRNA target gene prediction using a support vector machine
    • Kim S.K., Nam J.W., Rhee J.K., et al. MiTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 2006, 7:411.
    • (2006) BMC Bioinformatics , vol.7 , pp. 411
    • Kim, S.K.1    Nam, J.W.2    Rhee, J.K.3
  • 69
    • 38849145861 scopus 로고    scopus 로고
    • Prediction of both conserved and nonconserved microRNA targets in animals
    • Wang X., El Naqa I.M. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 2008, 24:325-332.
    • (2008) Bioinformatics , vol.24 , pp. 325-332
    • Wang, X.1    El Naqa, I.M.2
  • 70
    • 70350000602 scopus 로고    scopus 로고
    • TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples
    • Bandyopadhyay S., Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 2009, 25:2625-2631.
    • (2009) Bioinformatics , vol.25 , pp. 2625-2631
    • Bandyopadhyay, S.1    Mitra, R.2
  • 71
    • 80052842349 scopus 로고    scopus 로고
    • MultiMiTar: a novel multi objective optimization based miRNA-target prediction method
    • Mitra R., Bandyopadhyay S. MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS One 2011, 6(9):e24583.
    • (2011) PLoS One , vol.6 , Issue.9
    • Mitra, R.1    Bandyopadhyay, S.2
  • 73
    • 22244447130 scopus 로고    scopus 로고
    • Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms
    • Saetrom O., Snove O., Saetrom P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 2005, 11:995-1003.
    • (2005) RNA , vol.11 , pp. 995-1003
    • Saetrom, O.1    Snove, O.2    Saetrom, P.3
  • 74
    • 84945708011 scopus 로고
    • Backus normal form vs. Backus Naur form
    • Knuth D.E. Backus normal form vs. Backus Naur form. Commun ACM 1964, 7:735-736.
    • (1964) Commun ACM , vol.7 , pp. 735-736
    • Knuth, D.E.1
  • 75
    • 34047259186 scopus 로고    scopus 로고
    • Improving the prediction of human microRNA target genes by using ensemble algorithm
    • Yan X., Chao T., Tu K., et al. Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 2007, 581:1587-1593.
    • (2007) FEBS Lett , vol.581 , pp. 1587-1593
    • Yan, X.1    Chao, T.2    Tu, K.3
  • 76
    • 77952671774 scopus 로고    scopus 로고
    • TargetSpy: a supervised machine learning approach for microRNA target prediction
    • Sturm M., Hackenberg M., Langenberger D., et al. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 2010, 11:292.
    • (2010) BMC Bioinformatics , vol.11 , pp. 292
    • Sturm, M.1    Hackenberg, M.2    Langenberger, D.3
  • 77
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: a technique for combining boosting and wagging
    • Webb G.I. MultiBoosting: a technique for combining boosting and wagging. Mach Learn 2000, 40:159-196.
    • (2000) Mach Learn , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 78
    • 33645472191 scopus 로고    scopus 로고
    • Systematic identification of microRNA functions by combining target prediction and expression profiling
    • Wang X., Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006, 34(5):1646-1652.
    • (2006) Nucleic Acids Res , vol.34 , Issue.5 , pp. 1646-1652
    • Wang, X.1    Wang, X.2
  • 79
    • 36448982458 scopus 로고    scopus 로고
    • Naïve Bayes for microRNA target predictions-machine learning for microRNA targets
    • Yousef M., Jung S., Kossenkov A.V., et al. Naïve Bayes for microRNA target predictions-machine learning for microRNA targets. Bioinformatics 2007, 23(22):2987-2992.
    • (2007) Bioinformatics , vol.23 , Issue.22 , pp. 2987-2992
    • Yousef, M.1    Jung, S.2    Kossenkov, A.V.3
  • 80
    • 84868300633 scopus 로고    scopus 로고
    • Accurate miRNA target prediction using detailed binding site accessibility and machine learning on proteomics data
    • Reszko M., Maragkakis M., Alexiou P, et al. Accurate miRNA target prediction using detailed binding site accessibility and machine learning on proteomics data. Front Genet 2012, 2:103.
    • (2012) Front Genet , vol.2 , pp. 103
    • Reszko, M.1    Maragkakis, M.2    Alexiou, P.3
  • 81
    • 8144225486 scopus 로고    scopus 로고
    • MicroRNA genes are transcribed by RNA polymerase II
    • Lee Y., Kim M., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051-4060.
    • (2004) EMBO J , vol.23 , pp. 4051-4060
    • Lee, Y.1    Kim, M.2
  • 82
    • 34047234690 scopus 로고    scopus 로고
    • Characterization and identification of micro-RNA core promoters in four model species
    • Zhou X., Ruan J., et al. Characterization and identification of micro-RNA core promoters in four model species. PLoS Comput Biol 2007, 3(3):412-423.
    • (2007) PLoS Comput Biol , vol.3 , Issue.3 , pp. 412-423
    • Zhou, X.1    Ruan, J.2
  • 83
    • 48449084118 scopus 로고    scopus 로고
    • Connecting microRNA genes to the core transcriptional regulatory circuitry of embryotic stem cells
    • Marson A., Levine S., et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryotic stem cells. Cell 2008, 134(3):521-533.
    • (2008) Cell , vol.134 , Issue.3 , pp. 521-533
    • Marson, A.1    Levine, S.2
  • 84
    • 65449183132 scopus 로고    scopus 로고
    • Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data
    • Corcoran D., Pandit K., et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 2009, 4(4):e5279.
    • (2009) PLoS One , vol.4 , Issue.4
    • Corcoran, D.1    Pandit, K.2
  • 85
    • 82255185653 scopus 로고    scopus 로고
    • Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data
    • Chien C., Sun Y., Chang W., et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 2011, 39(21):9345-9356.
    • (2011) Nucleic Acids Res , vol.39 , Issue.21 , pp. 9345-9356
    • Chien, C.1    Sun, Y.2    Chang, W.3
  • 86
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modeling
    • Schlitt T., Brazma A. Current approaches to gene regulatory network modeling. BMC Bioinformatics 2007, 8(Suppl. 6):s9.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Schlitt, T.1    Brazma, A.2
  • 87
    • 34249849395 scopus 로고    scopus 로고
    • Discovery of microRNA-mRNA modules via population-based probabilistic learning
    • Joung J., Hwang K., et al. Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 2007, 23(9):1141-1147.
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1141-1147
    • Joung, J.1    Hwang, K.2
  • 88
    • 79960024314 scopus 로고    scopus 로고
    • Towards microRNA-mediated gene regulatory networks in plants
    • Meng Y., Shao C., Chen M. Towards microRNA-mediated gene regulatory networks in plants. Brief Bioinform 2011, 12(6):645-659.
    • (2011) Brief Bioinform , vol.12 , Issue.6 , pp. 645-659
    • Meng, Y.1    Shao, C.2    Chen, M.3
  • 89
    • 81355164253 scopus 로고    scopus 로고
    • Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data
    • Cheng C., Yan K., et al. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput Biol 2011, 7(11):e1002190.
    • (2011) PLoS Comput Biol , vol.7 , Issue.11
    • Cheng, C.1    Yan, K.2
  • 90
    • 37549000355 scopus 로고    scopus 로고
    • Efficient and interpretable fuzzy classifiers from data with support vector learning
    • Papadimitriou S., Terzidis K. Efficient and interpretable fuzzy classifiers from data with support vector learning. Intell Data Anal 2005, 9:527-550.
    • (2005) Intell Data Anal , vol.9 , pp. 527-550
    • Papadimitriou, S.1    Terzidis, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.