-
1
-
-
84863495094
-
The hallmarks of cancer: a long non-coding RNA point of view
-
Gutschner T., Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012, 9.
-
(2012)
RNA Biol
, vol.9
-
-
Gutschner, T.1
Diederichs, S.2
-
2
-
-
0344232733
-
MicroRNAs: runts of the genome assert themselves
-
Lai E.C. MicroRNAs: runts of the genome assert themselves. Curr Biol 2003, 13:925-936.
-
(2003)
Curr Biol
, vol.13
, pp. 925-936
-
-
Lai, E.C.1
-
3
-
-
33751250183
-
Computational identification of microRNAs and their targets
-
Zhang B., Pan X., Wang Q., et al. Computational identification of microRNAs and their targets. Comput Biol Chem 2006, 30:395-407.
-
(2006)
Comput Biol Chem
, vol.30
, pp. 395-407
-
-
Zhang, B.1
Pan, X.2
Wang, Q.3
-
4
-
-
63049136932
-
A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification
-
Yousef M., Showe L., Showe M. A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification. FEBS J 2009, 276:2150-2156.
-
(2009)
FEBS J
, vol.276
, pp. 2150-2156
-
-
Yousef, M.1
Showe, L.2
Showe, M.3
-
6
-
-
77954517267
-
MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems
-
Herranz H., Cohen S. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 2010, 24:1339-1344.
-
(2010)
Genes Dev
, vol.24
, pp. 1339-1344
-
-
Herranz, H.1
Cohen, S.2
-
7
-
-
0038054470
-
Computational and experimental identification of C. elegans microRNAs
-
Grad Y., Aach J., Hayes G.D., et al. Computational and experimental identification of C. elegans microRNAs. Mol Cell 2003, 11:1253-1263.
-
(2003)
Mol Cell
, vol.11
, pp. 1253-1263
-
-
Grad, Y.1
Aach, J.2
Hayes, G.D.3
-
8
-
-
22344449952
-
The developmental miRNA profiles of zebrafish as determined by small RNA cloning
-
Chen P.Y., Manninga H., Slanchev K., et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 2005, 19:1288-1293.
-
(2005)
Genes Dev
, vol.19
, pp. 1288-1293
-
-
Chen, P.Y.1
Manninga, H.2
Slanchev, K.3
-
9
-
-
34249003938
-
Principles and limitations of computational microRNA gene and target finding
-
Lindow M., Gorodkin J. Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol 2007, 26:339-351.
-
(2007)
DNA Cell Biol
, vol.26
, pp. 339-351
-
-
Lindow, M.1
Gorodkin, J.2
-
10
-
-
65849520676
-
Current tools for the identification of miRNA genes and their targets
-
Mendes N.D., Freitas A.T., Sagot M.F. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 2009, 37:2419-2433.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 2419-2433
-
-
Mendes, N.D.1
Freitas, A.T.2
Sagot, M.F.3
-
11
-
-
77949268292
-
Computational approaches for microRNA studies: a review
-
Li L., Xu J., Yang D., et al. Computational approaches for microRNA studies: a review. Mamm Genome 2010, 21:1-12.
-
(2010)
Mamm Genome
, vol.21
, pp. 1-12
-
-
Li, L.1
Xu, J.2
Yang, D.3
-
12
-
-
22844440427
-
Identification of hundreds of conserved and nonconserved human microRNAs
-
Bentwich I., Avniel A., Karov Y., et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005, 37:766-770.
-
(2005)
Nat Genet
, vol.37
, pp. 766-770
-
-
Bentwich, I.1
Avniel, A.2
Karov, Y.3
-
13
-
-
0037447334
-
The microRNAs of Caenorhabditis elegans
-
Lim L.P., Lau N.C., Weinstein E.G., et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003, 17:991-1008.
-
(2003)
Genes Dev
, vol.17
, pp. 991-1008
-
-
Lim, L.P.1
Lau, N.C.2
Weinstein, E.G.3
-
14
-
-
0038825783
-
Computational identification of Drosophila microRNA genes
-
Lai E.C., Tomancak P., Williams R.W., et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003, 4:R42.
-
(2003)
Genome Biol
, vol.4
-
-
Lai, E.C.1
Tomancak, P.2
Williams, R.W.3
-
15
-
-
12744261466
-
Computational prediction of miRNAs in Arabidopsis thaliana
-
Adai A., Johnson C., Mlotshwa S., et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 2005, 15:78-91.
-
(2005)
Genome Res
, vol.15
, pp. 78-91
-
-
Adai, A.1
Johnson, C.2
Mlotshwa, S.3
-
17
-
-
24644476482
-
MicroRNA identification based on sequence and structure alignment
-
Wang X., Zhang J., Li F., et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics 2005, 21:3610-3614.
-
(2005)
Bioinformatics
, vol.21
, pp. 3610-3614
-
-
Wang, X.1
Zhang, J.2
Li, F.3
-
18
-
-
2942672580
-
Computational identification of plant microRNAs and their targets, including a stress-induced miRNA
-
Jones-Rhoades M.W., Bartel D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14:787-799.
-
(2004)
Mol Cell
, vol.14
, pp. 787-799
-
-
Jones-Rhoades, M.W.1
Bartel, D.P.2
-
19
-
-
33751548288
-
Diversity of microRNAs in human and chimpanzee brain
-
Berezikov E., Thuemmler F., van Laake L.W., et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006, 38:1375-1377.
-
(2006)
Nat Genet
, vol.38
, pp. 1375-1377
-
-
Berezikov, E.1
Thuemmler, F.2
van Laake, L.W.3
-
20
-
-
33745249539
-
-
Viruses and microRNAs. Nat Genet
-
Cullen BR. Viruses and microRNAs. Nat Genet 38(Suppl.):S25-30.
-
, vol.38
, Issue.SUPPL.
, pp. 25-30
-
-
Cullen, B.R.1
-
21
-
-
30344447264
-
Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine
-
Xue C., Li F., He T., et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005, 6:310.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 310
-
-
Xue, C.1
Li, F.2
He, T.3
-
22
-
-
27844508214
-
Identification of clustered microRNAs using an ab initio prediction method
-
Sewer A., Paul N., Landgraf P., et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 2005, 6:267.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 267
-
-
Sewer, A.1
Paul, N.2
Landgraf, P.3
-
24
-
-
33747871855
-
Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data
-
Hertel J., Stadler P.F. Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 2006, 22:197-202.
-
(2006)
Bioinformatics
, vol.22
, pp. 197-202
-
-
Hertel, J.1
Stadler, P.F.2
-
25
-
-
34447309058
-
De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
-
Ng K.L.S., Mishra S.K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 2007, 23:1321-1330.
-
(2007)
Bioinformatics
, vol.23
, pp. 1321-1330
-
-
Ng, K.L.S.1
Mishra, S.K.2
-
26
-
-
64549116289
-
MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction
-
Batuwita R., Palade V. MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009, 25:989-995.
-
(2009)
Bioinformatics
, vol.25
, pp. 989-995
-
-
Batuwita, R.1
Palade, V.2
-
27
-
-
33646358186
-
The application of support vector machines to medical decision support: a case study
-
Veropoulos K., Cristianini N., Campbell C. The application of support vector machines to medical decision support: a case study. ACAI 1999.
-
(1999)
ACAI
-
-
Veropoulos, K.1
Cristianini, N.2
Campbell, C.3
-
28
-
-
38349097919
-
MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans
-
Huang T.H., Fan B., Rothschild M.F., et al. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 2007, 8:341.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 341
-
-
Huang, T.H.1
Fan, B.2
Rothschild, M.F.3
-
30
-
-
79955779744
-
PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs
-
Xuan P., Guo M., Liu X., et al. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 2011, 27:1368-1376.
-
(2011)
Bioinformatics
, vol.27
, pp. 1368-1376
-
-
Xuan, P.1
Guo, M.2
Liu, X.3
-
31
-
-
79955757907
-
Prediction of novel pre-microRNAs with high accuracy through boosting and SVM
-
Zhang Y., Yang Y., Zhang H., et al. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM. Bioinformatics 2011, 27:1436-1437.
-
(2011)
Bioinformatics
, vol.27
, pp. 1436-1437
-
-
Zhang, Y.1
Yang, Y.2
Zhang, H.3
-
32
-
-
21844477027
-
Human microRNA prediction through a probabilistic co-learning model of sequence and structure
-
Nam J.M., Shin K.R., Han J., et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res 2005, 33:3570-3581.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 3570-3581
-
-
Nam, J.M.1
Shin, K.R.2
Han, J.3
-
33
-
-
75149197426
-
Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM)
-
Agarwal S., Vaz C., Bhattacharya A., et al. Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinformatics 2010, 11(Suppl. 1):S29.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.SUPPL. 1
-
-
Agarwal, S.1
Vaz, C.2
Bhattacharya, A.3
-
34
-
-
60849085436
-
HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models
-
Kadri S., Hinman V., Benos P.V. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 2009, 10(Suppl. 1):S35.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.SUPPL. 1
-
-
Kadri, S.1
Hinman, V.2
Benos, P.V.3
-
35
-
-
33745594057
-
Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier
-
Yousef M., Nebozhyn M., Shatkay H., et al. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 2006, 22:1325-1334.
-
(2006)
Bioinformatics
, vol.22
, pp. 1325-1334
-
-
Yousef, M.1
Nebozhyn, M.2
Shatkay, H.3
-
36
-
-
57649207899
-
Using a kernel density estimation based classifier to predict species-specific microRNA precursors
-
Chang D.T.H., Wang C.C., Chen J.W. Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 2008, 9(Suppl. 12):S2.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.SUPPL. 12
-
-
Chang, D.T.H.1
Wang, C.C.2
Chen, J.W.3
-
37
-
-
46249127789
-
MicroRNA prediction with a novel ranking algorithm based on random walks
-
Xu Y., Zhou X., Zhang W. MicroRNA prediction with a novel ranking algorithm based on random walks. Bioinformatics 2008, 24:i50-i58.
-
(2008)
Bioinformatics
, vol.24
-
-
Xu, Y.1
Zhou, X.2
Zhang, W.3
-
38
-
-
75149198083
-
Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm
-
Hsieh C.H., Chang D.T.H., Hsueh C.H., et al. Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm. BMC Bioinformatics 2010, 11(Suppl. 1):S52.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.SUPPL. 1
-
-
Hsieh, C.H.1
Chang, D.T.H.2
Hsueh, C.H.3
-
39
-
-
79955948344
-
Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure
-
Xiao J., Tang X., Li Y., et al. Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure. BMC Bioinformatics 2011, 12:165.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 165
-
-
Xiao, J.1
Tang, X.2
Li, Y.3
-
41
-
-
57049175013
-
Detecting microRNA binding and siRNA off-target effects from expression data
-
van Dongen S., Abreu-Goodger C., Enright A.J. Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 2008, 5:1023-1025.
-
(2008)
Nat Methods
, vol.5
, pp. 1023-1025
-
-
van Dongen, S.1
Abreu-Goodger, C.2
Enright, A.J.3
-
42
-
-
79958033251
-
MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences
-
Wu Y., Wei B., Liu H., et al. MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 2011, 12:107.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 107
-
-
Wu, Y.1
Wei, B.2
Liu, H.3
-
43
-
-
77954304695
-
DSAP: deep-sequencing small RNA analysis pipeline
-
Huang P.J., Liu Y.C., Lee C.C., et al. DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 2010, 38:W385-W391.
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Huang, P.J.1
Liu, Y.C.2
Lee, C.C.3
-
44
-
-
41849084855
-
Discovering microRNAs from deep sequencing data using miRDeep
-
Friedlander M.R., Chen W., Adamidi C., et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008, 26:407-415.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 407-415
-
-
Friedlander, M.R.1
Chen, W.2
Adamidi, C.3
-
45
-
-
84855293838
-
MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades
-
Friedländer M.R., Mackowiak S.D., Li N., et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2011.
-
(2011)
Nucleic Acids Res.
-
-
Friedländer, M.R.1
Mackowiak, S.D.2
Li, N.3
-
46
-
-
80052701585
-
MiRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants
-
Yang X., Li L. MiRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 2011, 27:2614-2615.
-
(2011)
Bioinformatics
, vol.27
, pp. 2614-2615
-
-
Yang, X.1
Li, L.2
-
47
-
-
67849114241
-
MiRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments
-
Hackenberg M., Sturm M., Langenberger D., et al. MiRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 2009, 37:68-76.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 68-76
-
-
Hackenberg, M.1
Sturm, M.2
Langenberger, D.3
-
48
-
-
77956508095
-
MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data
-
Mathelier A., Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 2010, 26:2226-2234.
-
(2010)
Bioinformatics
, vol.26
, pp. 2226-2234
-
-
Mathelier, A.1
Carbone, A.2
-
50
-
-
77952840905
-
MicroRNAs targeting and target prediction
-
Saito T., Saetrom P. MicroRNAs targeting and target prediction. New Biotechnol 2010, 27(3):243-249.
-
(2010)
New Biotechnol
, vol.27
, Issue.3
, pp. 243-249
-
-
Saito, T.1
Saetrom, P.2
-
51
-
-
77951953262
-
Got target?: computational methods for microRNA target prediction and their extension
-
Min H., Yoon S. Got target?: computational methods for microRNA target prediction and their extension. Exp Mol Med 2010, 42(4):233-244.
-
(2010)
Exp Mol Med
, vol.42
, Issue.4
, pp. 233-244
-
-
Min, H.1
Yoon, S.2
-
52
-
-
4243170045
-
Identification of Drosophila MicroRNA targets
-
Stark A., Brennecke J., Russell R.B., et al. Identification of Drosophila MicroRNA targets. PLoS Biol 2003, 1:E60.
-
(2003)
PLoS Biol
, vol.1
-
-
Stark, A.1
Brennecke, J.2
Russell, R.B.3
-
54
-
-
0346094457
-
Prediction of mammalian MicroRNA targets
-
Lewis B.P., Shih I., Jones-Rhoades M.W., et al. Prediction of mammalian MicroRNA targets. Cell 2003, 115(7):787-798.
-
(2003)
Cell
, vol.115
, Issue.7
, pp. 787-798
-
-
Lewis, B.P.1
Shih, I.2
Jones-Rhoades, M.W.3
-
55
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
-
(2005)
Cell
, vol.120
, Issue.1
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
56
-
-
2442672918
-
A combined computational-experimental approach predicts human microRNA targets
-
Kiriakidou M., Nelson P.T., Kouranov A., et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004, 18(10):1165-1178.
-
(2004)
Genes Dev
, vol.18
, Issue.10
, pp. 1165-1178
-
-
Kiriakidou, M.1
Nelson, P.T.2
Kouranov, A.3
-
57
-
-
4644237189
-
Fast and effective prediction of microRNA/target duplexes
-
Rehmsmeier M., Steffen P., Hochsmann M., et al. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10(10):1507-1517.
-
(2004)
RNA
, vol.10
, Issue.10
, pp. 1507-1517
-
-
Rehmsmeier, M.1
Steffen, P.2
Hochsmann, M.3
-
58
-
-
50849141708
-
MirWIP: microRNA target prediction based on miRNP enriched transcripts
-
Hammell M., Long D., Zhang L., et al. MirWIP: microRNA target prediction based on miRNP enriched transcripts. Nat Methods 2008, 5(9):813-819.
-
(2008)
Nat Methods
, vol.5
, Issue.9
, pp. 813-819
-
-
Hammell, M.1
Long, D.2
Zhang, L.3
-
59
-
-
61849143920
-
MicroRNA target prediction by expression analysis of host genes
-
Gennarino V.A., Sardiello M., Avellino R., et al. MicroRNA target prediction by expression analysis of host genes. Genome Res 2009, 19(3):490-491.
-
(2009)
Genome Res
, vol.19
, Issue.3
, pp. 490-491
-
-
Gennarino, V.A.1
Sardiello, M.2
Avellino, R.3
-
60
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A., Grãin D., Poy M.N., et al. Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
-
(2005)
Nat Genet
, vol.37
, Issue.5
, pp. 495-500
-
-
Krek, A.1
Grãin, D.2
Poy, M.N.3
-
61
-
-
79959805164
-
MiRWalk - database: prediction of possible miRNA binding sites by " walking" the genes of three genomes
-
Dweep H., Sticht C., Pandey P., Gretz N. MiRWalk - database: prediction of possible miRNA binding sites by " walking" the genes of three genomes. J Biomed Inform 2011, 44:839-847.
-
(2011)
J Biomed Inform
, vol.44
, pp. 839-847
-
-
Dweep, H.1
Sticht, C.2
Pandey, P.3
Gretz, N.4
-
62
-
-
84870829245
-
Interactive exploration of RNA22 microRNA target predictions
-
Loher Phillipe, Rigoutsos Isidore Interactive exploration of RNA22 microRNA target predictions. Bioinform Appl Note 2012, 28(24):3322-3323.
-
(2012)
Bioinform Appl Note
, vol.28
, Issue.24
, pp. 3322-3323
-
-
Loher, P.1
Rigoutsos, I.2
-
63
-
-
33947424813
-
MicroTar: predicting microRNA targets from RNA duplexes
-
Thadani R., Tammi M.T. MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 2006, 7:S20.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Thadani, R.1
Tammi, M.T.2
-
64
-
-
34347398567
-
Inference of miRNA targets using evolutionary conservation and pathway analysis
-
Gaidatzis D., van Nimwegen E., Hausser J., et al. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007, 8:69.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 69
-
-
Gaidatzis, D.1
van Nimwegen, E.2
Hausser, J.3
-
65
-
-
67849116900
-
MirZ: an integrated microRNA expression atlas and target prediction resource
-
Hausser J., Berninger P., Rodak C., et al. MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 2009, 37:W266-W272.
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Hausser, J.1
Berninger, P.2
Rodak, C.3
-
66
-
-
36749005527
-
Using expression profiling data to identify human microRNA targets
-
Huang J.C., Babak T., Corson T.W., et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007, 4:1045-1049.
-
(2007)
Nat Methods
, vol.4
, pp. 1045-1049
-
-
Huang, J.C.1
Babak, T.2
Corson, T.W.3
-
67
-
-
75149129669
-
MTar: a computational microRNA target prediction architecture for human transcriptome
-
Chandra V., Girijadevi R., Nair A.S., et al. MTar: a computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics 2010, 11:S2.
-
(2010)
BMC Bioinformatics
, vol.11
-
-
Chandra, V.1
Girijadevi, R.2
Nair, A.S.3
-
68
-
-
33749645474
-
MiTarget: microRNA target gene prediction using a support vector machine
-
Kim S.K., Nam J.W., Rhee J.K., et al. MiTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 2006, 7:411.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 411
-
-
Kim, S.K.1
Nam, J.W.2
Rhee, J.K.3
-
69
-
-
38849145861
-
Prediction of both conserved and nonconserved microRNA targets in animals
-
Wang X., El Naqa I.M. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 2008, 24:325-332.
-
(2008)
Bioinformatics
, vol.24
, pp. 325-332
-
-
Wang, X.1
El Naqa, I.M.2
-
70
-
-
70350000602
-
TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples
-
Bandyopadhyay S., Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 2009, 25:2625-2631.
-
(2009)
Bioinformatics
, vol.25
, pp. 2625-2631
-
-
Bandyopadhyay, S.1
Mitra, R.2
-
71
-
-
80052842349
-
MultiMiTar: a novel multi objective optimization based miRNA-target prediction method
-
Mitra R., Bandyopadhyay S. MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS One 2011, 6(9):e24583.
-
(2011)
PLoS One
, vol.6
, Issue.9
-
-
Mitra, R.1
Bandyopadhyay, S.2
-
72
-
-
84861715739
-
Predicting human miRNA target genes using a novel evolutionary methodology
-
Korfiati A., Kleftogiannis D., Theofilatos K., et al. Predicting human miRNA target genes using a novel evolutionary methodology. Artif Intell: Theor Appl Lect Notes Comput Sci 2012, 7297(2012):291-298.
-
(2012)
Artif Intell: Theor Appl Lect Notes Comput Sci
, vol.7297
, Issue.2012
, pp. 291-298
-
-
Korfiati, A.1
Kleftogiannis, D.2
Theofilatos, K.3
-
73
-
-
22244447130
-
Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms
-
Saetrom O., Snove O., Saetrom P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 2005, 11:995-1003.
-
(2005)
RNA
, vol.11
, pp. 995-1003
-
-
Saetrom, O.1
Snove, O.2
Saetrom, P.3
-
74
-
-
84945708011
-
Backus normal form vs. Backus Naur form
-
Knuth D.E. Backus normal form vs. Backus Naur form. Commun ACM 1964, 7:735-736.
-
(1964)
Commun ACM
, vol.7
, pp. 735-736
-
-
Knuth, D.E.1
-
75
-
-
34047259186
-
Improving the prediction of human microRNA target genes by using ensemble algorithm
-
Yan X., Chao T., Tu K., et al. Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 2007, 581:1587-1593.
-
(2007)
FEBS Lett
, vol.581
, pp. 1587-1593
-
-
Yan, X.1
Chao, T.2
Tu, K.3
-
76
-
-
77952671774
-
TargetSpy: a supervised machine learning approach for microRNA target prediction
-
Sturm M., Hackenberg M., Langenberger D., et al. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 2010, 11:292.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 292
-
-
Sturm, M.1
Hackenberg, M.2
Langenberger, D.3
-
77
-
-
0034247206
-
MultiBoosting: a technique for combining boosting and wagging
-
Webb G.I. MultiBoosting: a technique for combining boosting and wagging. Mach Learn 2000, 40:159-196.
-
(2000)
Mach Learn
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
78
-
-
33645472191
-
Systematic identification of microRNA functions by combining target prediction and expression profiling
-
Wang X., Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006, 34(5):1646-1652.
-
(2006)
Nucleic Acids Res
, vol.34
, Issue.5
, pp. 1646-1652
-
-
Wang, X.1
Wang, X.2
-
79
-
-
36448982458
-
Naïve Bayes for microRNA target predictions-machine learning for microRNA targets
-
Yousef M., Jung S., Kossenkov A.V., et al. Naïve Bayes for microRNA target predictions-machine learning for microRNA targets. Bioinformatics 2007, 23(22):2987-2992.
-
(2007)
Bioinformatics
, vol.23
, Issue.22
, pp. 2987-2992
-
-
Yousef, M.1
Jung, S.2
Kossenkov, A.V.3
-
80
-
-
84868300633
-
Accurate miRNA target prediction using detailed binding site accessibility and machine learning on proteomics data
-
Reszko M., Maragkakis M., Alexiou P, et al. Accurate miRNA target prediction using detailed binding site accessibility and machine learning on proteomics data. Front Genet 2012, 2:103.
-
(2012)
Front Genet
, vol.2
, pp. 103
-
-
Reszko, M.1
Maragkakis, M.2
Alexiou, P.3
-
81
-
-
8144225486
-
MicroRNA genes are transcribed by RNA polymerase II
-
Lee Y., Kim M., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051-4060.
-
(2004)
EMBO J
, vol.23
, pp. 4051-4060
-
-
Lee, Y.1
Kim, M.2
-
82
-
-
34047234690
-
Characterization and identification of micro-RNA core promoters in four model species
-
Zhou X., Ruan J., et al. Characterization and identification of micro-RNA core promoters in four model species. PLoS Comput Biol 2007, 3(3):412-423.
-
(2007)
PLoS Comput Biol
, vol.3
, Issue.3
, pp. 412-423
-
-
Zhou, X.1
Ruan, J.2
-
83
-
-
48449084118
-
Connecting microRNA genes to the core transcriptional regulatory circuitry of embryotic stem cells
-
Marson A., Levine S., et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryotic stem cells. Cell 2008, 134(3):521-533.
-
(2008)
Cell
, vol.134
, Issue.3
, pp. 521-533
-
-
Marson, A.1
Levine, S.2
-
84
-
-
65449183132
-
Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data
-
Corcoran D., Pandit K., et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 2009, 4(4):e5279.
-
(2009)
PLoS One
, vol.4
, Issue.4
-
-
Corcoran, D.1
Pandit, K.2
-
85
-
-
82255185653
-
Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data
-
Chien C., Sun Y., Chang W., et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 2011, 39(21):9345-9356.
-
(2011)
Nucleic Acids Res
, vol.39
, Issue.21
, pp. 9345-9356
-
-
Chien, C.1
Sun, Y.2
Chang, W.3
-
86
-
-
45149101194
-
Current approaches to gene regulatory network modeling
-
Schlitt T., Brazma A. Current approaches to gene regulatory network modeling. BMC Bioinformatics 2007, 8(Suppl. 6):s9.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 6
-
-
Schlitt, T.1
Brazma, A.2
-
87
-
-
34249849395
-
Discovery of microRNA-mRNA modules via population-based probabilistic learning
-
Joung J., Hwang K., et al. Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 2007, 23(9):1141-1147.
-
(2007)
Bioinformatics
, vol.23
, Issue.9
, pp. 1141-1147
-
-
Joung, J.1
Hwang, K.2
-
88
-
-
79960024314
-
Towards microRNA-mediated gene regulatory networks in plants
-
Meng Y., Shao C., Chen M. Towards microRNA-mediated gene regulatory networks in plants. Brief Bioinform 2011, 12(6):645-659.
-
(2011)
Brief Bioinform
, vol.12
, Issue.6
, pp. 645-659
-
-
Meng, Y.1
Shao, C.2
Chen, M.3
-
89
-
-
81355164253
-
Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data
-
Cheng C., Yan K., et al. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput Biol 2011, 7(11):e1002190.
-
(2011)
PLoS Comput Biol
, vol.7
, Issue.11
-
-
Cheng, C.1
Yan, K.2
-
90
-
-
37549000355
-
Efficient and interpretable fuzzy classifiers from data with support vector learning
-
Papadimitriou S., Terzidis K. Efficient and interpretable fuzzy classifiers from data with support vector learning. Intell Data Anal 2005, 9:527-550.
-
(2005)
Intell Data Anal
, vol.9
, pp. 527-550
-
-
Papadimitriou, S.1
Terzidis, K.2
|