-
1
-
-
0002094343
-
-
Advances in Kernel Methods, Support Vector Learning, The MIT Press
-
P. Bartlett and J.S. Taylor, Generalization Performance of Support Vector Machines and Other Pattern Classifiers, Advances in Kernel Methods, Support Vector Learning, The MIT Press, 1999, 43-55.
-
(1999)
Generalization Performance of Support Vector Machines and Other Pattern Classifiers
, pp. 43-55
-
-
Bartlett, P.1
Taylor, J.S.2
-
3
-
-
0032594959
-
-
New York, Wiley V. N. Vapnik, An Overview of Statistical Learning Theory, IEEE Trans. On Neural Networks
-
V.N. Vapnik, 1998, Statistical Learning Theory, New York, Wiley 9. V. N. Vapnik, An Overview of Statistical Learning Theory, IEEE Trans. On Neural Networks 10(5) (1999), 988-999.
-
(1998)
Statistical Learning Theory
, vol.9
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
5
-
-
0032594954
-
Input space versus feature space in Kernel-based methods
-
B. Scholkopf, S. Mika, J.C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch and A. Smola, Input space versus feature space in Kernel-based methods, IEEE Trans. On Neural Networks 10(5) (1999).
-
(1999)
IEEE Trans on Neural Networks
, vol.10
, pp. 5
-
-
Scholkopf, B.1
Mika, S.2
Burges, J.C.3
Knirsch, P.4
Muller, K.-R.5
Ratsch, G.6
Smola, A.7
-
6
-
-
17444438778
-
New support vector algorithms
-
B. Scholkopf, A.J. Smola, R.C.Williamson and P.L. Bartlett, New support vector algorithms, Neural Computation, 2000, 1207-1245.
-
(2000)
Neural Computation
, pp. 1207-1245
-
-
Scholkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
8
-
-
0002714543
-
Making large-scale svm learning practical
-
C.J.C. Burges and A.J. Smola, eds MIT Press, Cambridge, USA
-
T. Joachims, Making Large-Scale SVM Learning Practical, in: Advances in Kernel Methods-Support Vector Learning, Bernhard Scholkopf, C.J.C. Burges and A.J. Smola, eds, MIT Press, Cambridge, USA, 1998.
-
(1998)
Advances in Kernel Methods-Support Vector Learning, Bernhard Scholkopf
-
-
Joachims, T.1
-
9
-
-
0031334889
-
-
Proceedings of the IEEE Workshop, Amelia Island, FL
-
E. Osuna, R. Freund and F. Girosi, An improved training algorithm for support vector machines, Neural Networks for Signal Processing VII, Proceedings of the 1997 IEEE Workshop, Amelia Island, FL, 276-285.
-
(1997)
An Improved Training Algorithm for Support Vector Machines, Neural Networks for Signal Processing VII
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
10
-
-
0002941010
-
Support vector machines for dynamic reconstruction of a chaotic system
-
B. Scholkopf J. Burges and A.J. Smola, eds, Cambridge, MA MIT Press
-
D. Mattera and S. Haykin, Support vector machines for dynamic reconstruction of a chaotic system, in: Advances in Kernel Methods-Support Vector Learning, B. Scholkopf, J. Burges and A.J. Smola, eds, Cambridge, MA: MIT Press, 1999, pp. 211-242.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 211-242
-
-
Mattera, D.1
Haykin, S.2
-
11
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference system
-
May/June
-
J.S.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Syst. Man Cybern. 23 (May/June 1993), 665-685.
-
(1993)
IEEE Trans. Syst. Syst. Man Cybern
, vol.23
, pp. 665-685
-
-
Jang, J.S.R.1
-
12
-
-
0030215076
-
Fuzzy function approximation with ellipsoidal rules
-
Aug
-
J.A. Dickerson and B. Kosko, Fuzzy function approximation with ellipsoidal rules, IEEE Trans. Syst. Man. Cybern. 26 (Aug. 1996), 542-560.
-
(1996)
IEEE Trans. Syst. Man. Cybern
, vol.26
, pp. 542-560
-
-
Dickerson, J.A.1
Kosko, B.2
-
14
-
-
0032098361
-
The connection between regularization operators and support vector kenrls
-
A.J. Smola, B. Scholkopf and K.R. Muller, The connection between regularization operators and support vector kenrls, Neural Networks 11(4) (1998), 637-649.
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.J.1
Scholkopf, B.2
Muller, K.R.3
-
15
-
-
0346076782
-
Support vector learning for fuzzy rule-based classification systems
-
December
-
Y. Chen and J.Z.Wang, Support vector learning for fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems 11(6) (December 2003), 716-728.
-
(2003)
IEEE Transactions on Fuzzy Systems
, vol.11
, Issue.6
, pp. 716-728
-
-
Chen, Y.1
Wang, J.Z.2
-
17
-
-
2542639357
-
An Efficient method for computing leave-one-out error in support vector machines with gaussian kernels
-
May
-
M.M.S. Lee, S.S. Keerthi, C.J. Ong and D. DeCoste, An Efficient method for computing leave-one-out error in support vector machines with gaussian kernels, IEEE Transactions on Neural Networks 15(3) (May 2004), 750-757.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.3
, pp. 750-757
-
-
Lee, M.M.S.1
Keerthi, S.S.2
Ong, C.J.3
Decoste, D.4
-
18
-
-
1242263791
-
Aneuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
-
January
-
D. Chakraborty and N.R. Pal, Aneuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, IEEE Transactions on Neural Networks 15(1) (January 2004), 110-123.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.1
, pp. 110-123
-
-
Chakraborty, D.1
Pal, N.R.2
-
19
-
-
3042555856
-
Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms
-
June
-
M.J. del Jesus, F. Holfmann, L. Jun Navascues and L. Sanchez, Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms, IEEE Trans. on Fuzzy Systems 12(3) (June 2004), 296-308.
-
(2004)
IEEE Trans on Fuzzy Systems
, vol.12
, Issue.3
, pp. 296-308
-
-
Del Jesus, M.J.1
Holfmann, F.2
Navascues, L.J.3
Sanchez, L.4
-
20
-
-
22044442216
-
A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments
-
G.C. Mouzouris and J.M. Mendel, A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments, J. Intell. Fuzzy Syst. 55 (1997), 367-374.
-
(1997)
J. Intell. Fuzzy Syst
, vol.55
, pp. 367-374
-
-
Mouzouris, G.C.1
Mendel, J.M.2
-
22
-
-
0037014776
-
Gene expression profiling of hereditary and sporadic ovarian cancers reveals unique BRCA1 and BRCA2 signatures
-
July 3
-
I.A. Hedenfalk, Gene expression profiling of hereditary and sporadic ovarian cancers reveals unique BRCA1 and BRCA2 signatures, Journal of the National Cancer Institute 94(13) (July 3), 2002.
-
(2002)
Journal of the National Cancer Institute
, vol.94
, pp. 13
-
-
Hedenfalk, I.A.1
-
23
-
-
0035931947
-
Gene expression profiles in hereditary breast cancer
-
I. Hedenfalk, D. Duggan, Y. Chen, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. Dougherty, J. Kohonen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Johannsson, H. Olsson, B. Wilfond, G. Sauter, O. Kallioniemi, A. Borg and J. Trent, Gene expression profiles in hereditary breast cancer, New England Journal of Medicine 244(8) (2001), 539-548.
-
(2001)
New England Journal of Medicine
, vol.244
, Issue.8
, pp. 539-548
-
-
Hedenfalk, I.1
Duggan, D.2
Chen, Y.3
Bittner, M.4
Simon, R.5
Meltzer, P.6
Gusterson, B.7
Esteller, M.8
Raffeld, M.9
Yakhini, Z.10
Ben-Dor, A.11
Dougherty, E.12
Kohonen, J.13
Bubendorf, L.14
Fehrle, W.15
Pittaluga, S.16
Gruvberger, S.17
Loman, N.18
Johannsson, O.19
Olsson, H.20
Wilfond, B.21
Sauter, G.22
Kallioniemi, O.23
Borg, A.24
Trent, J.25
more..
-
25
-
-
20344387628
-
Symbolic adaptive neuro-fuzzy inference for data mining of heterogenous data, Intelligent Data Analysis (IDA)
-
S. Papadimitriou and K. Terzidis, Symbolic adaptive neuro-fuzzy inference for data mining of heterogenous data, Intelligent Data Analysis (IDA) Journal 7(4) (2003), 327-346.
-
(2003)
Journal
, vol.7
, Issue.4
, pp. 327-346
-
-
Papadimitriou, S.1
Terzidis, K.2
-
26
-
-
20344385445
-
Growing kernel-based self-organized maps trained with supervised bias, Intelligent Data Analysis (IDA)
-
S. Papadimitriou and K. Terzidis, Growing kernel-based self-organized maps trained with supervised bias, Intelligent Data Analysis (IDA) journal, 8(2) (2004), 111-130.
-
(2004)
Journal
, vol.8
, Issue.2
, pp. 111-130
-
-
Papadimitriou, S.1
Terzidis, K.2
-
27
-
-
4444353693
-
Kernel-based self-organized maps trained with supervised bias for gene expression data analysis
-
Imperial College Press
-
S. Papadimitriou and S.D. Likothanassis, Kernel-based self-organized maps trained with supervised bias for gene expression data analysis, Journal of Bioinformatics and Computational Biology (JBCB), Imperial College Press 1(4) (2004), 647-680.
-
(2004)
Journal of Bioinformatics and Computational Biology (JBCB)
, vol.1
, Issue.4
, pp. 647-680
-
-
Papadimitriou, S.1
Likothanassis, S.D.2
-
28
-
-
0042343747
-
Support vector identification of seismic electric signals, IJPRAI
-
June
-
A. Ifantis and S. Papadimitriou, Support vector identification of seismic electric signals, IJPRAI (International Journal Pattern Recognition and Artificial Intelligence), World Scientific 17(4) (June 2003), 545-566.
-
(2003)
International Journal Pattern Recognition and Artificial Intelligence), World Scientific
, vol.17
, Issue.4
, pp. 545-566
-
-
Ifantis, A.1
Papadimitriou, S.2
-
29
-
-
1542644781
-
Nonlinear evaluation of the unpredictability of the electrotelluric field variations signal before major earthquakes
-
October
-
A. Ifantis and S. Papadimitriou, Nonlinear evaluation of the unpredictability of the Electrotelluric Field Variations Signal before major earthquakes, Int. Journal of Neural Systems, World Scientific Press 13(5) (October 2003), 315-332.
-
(2003)
Int. Journal of Neural Systems, World Scientific Press 13(
, vol.5
, pp. 315-332
-
-
Ifantis, A.1
Papadimitriou, S.2
-
30
-
-
0021892282
-
Fuzzy identification of systems and its applications to modeling and control
-
Feb
-
T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man. Cybern. SMC-15, (Feb. 1985), 116-132.
-
(1985)
IEEE Trans. Syst. Man. Cybern. SMC-15
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
31
-
-
3042547260
-
Generating an interpretable family of fuzzy partitions from data
-
June
-
S. Guillaume and B. Charnomordic, Generating an interpretable family of fuzzy partitions from data, IEEE Trans. Fuzzy Systems 12(3) (June 2004), 324-335.
-
(2004)
IEEE Trans. Fuzzy Systems
, vol.12
, Issue.3
, pp. 324-335
-
-
Guillaume, S.1
Charnomordic, B.2
-
32
-
-
0344395607
-
POPFNN-CRI(S): Pseudo Outer Product-based Fuzzy Neural Network Using the Compositional Rule of Inference and Singleton Fuzzifier, Part B
-
K.K. Ang, C. Quek and M. Pasquier, POPFNN-CRI(S): Pseudo outer product-based fuzzy neural network using the compositional rule of inference and singleton fuzzifier, Part B, IEEE Transactions on Systems, Man and Cybernetics 33(6) (2003), 838-849.
-
(2003)
IEEE Transactions on Systems, Man and Cybernetics
, vol.33
, Issue.6
, pp. 838-849
-
-
Ang, K.K.1
Quek, C.2
Pasquier, M.3
-
33
-
-
0027266182
-
Functional equivalence between radial basis function networks and fuzzy inference systems
-
Feb
-
J.S.R. Jang and C.T. Sun, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Trans. Neural Networks 4 (Feb. 1993), 156-159.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 156-159
-
-
Jang, J.S.R.1
Sun, C.T.2
-
35
-
-
14544280631
-
RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm
-
K.K. Ang and C. Quek, RSPOP: Rough Set-Based Pseudo Outer-Product Fuzzy Rule Identification Algorithm, Neural Computation 17(1) (2005), 205-243.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 205-243
-
-
Ang, K.K.1
Quek, C.2
-
36
-
-
0038173250
-
Extracting interpretable rules from rbf networks
-
Y. Jin and B. Sendhoff, Extracting Interpretable Rules from RBF Networks, Neural Processing Letters 17(2) (2003), 149-164.
-
(2003)
Neural Processing Letters
, vol.17
, Issue.2
, pp. 149-164
-
-
Jin, Y.1
Sendhoff, B.2
-
37
-
-
0035196019
-
The POP learning algorithms: Reducing work in identifying fuzzy rules
-
C. Quek and R.W. Zhou, The POP learning algorithms: reducing work in identifying fuzzy rules, Neural Networks 14 (2001), 1431-1445
-
(2001)
Neural Networks
, vol.14
, pp. 1431-1445
-
-
Quek, C.1
Zhou, R.W.2
|