메뉴 건너뛰기




Volumn 9, Issue 6, 2005, Pages 527-550

Efficient and interpretable fuzzy classifiers from data with support vector learning

Author keywords

fuzzy basis functions; fuzzy rules; interpretable rules; kernel classifiers; rule mining; Support vector machines

Indexed keywords

CLASSIFICATION (OF INFORMATION); FUZZY RULES; GENE EXPRESSION; INFERENCE ENGINES; LINGUISTICS; SUPPORT VECTOR MACHINES; VECTORS;

EID: 37549000355     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2005-9603     Document Type: Review
Times cited : (16)

References (37)
  • 2
  • 3
    • 0032594959 scopus 로고    scopus 로고
    • New York, Wiley V. N. Vapnik, An Overview of Statistical Learning Theory, IEEE Trans. On Neural Networks
    • V.N. Vapnik, 1998, Statistical Learning Theory, New York, Wiley 9. V. N. Vapnik, An Overview of Statistical Learning Theory, IEEE Trans. On Neural Networks 10(5) (1999), 988-999.
    • (1998) Statistical Learning Theory , vol.9 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 10
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • B. Scholkopf J. Burges and A.J. Smola, eds, Cambridge, MA MIT Press
    • D. Mattera and S. Haykin, Support vector machines for dynamic reconstruction of a chaotic system, in: Advances in Kernel Methods-Support Vector Learning, B. Scholkopf, J. Burges and A.J. Smola, eds, Cambridge, MA: MIT Press, 1999, pp. 211-242.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 211-242
    • Mattera, D.1    Haykin, S.2
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/June
    • J.S.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Syst. Man Cybern. 23 (May/June 1993), 665-685.
    • (1993) IEEE Trans. Syst. Syst. Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 12
    • 0030215076 scopus 로고    scopus 로고
    • Fuzzy function approximation with ellipsoidal rules
    • Aug
    • J.A. Dickerson and B. Kosko, Fuzzy function approximation with ellipsoidal rules, IEEE Trans. Syst. Man. Cybern. 26 (Aug. 1996), 542-560.
    • (1996) IEEE Trans. Syst. Man. Cybern , vol.26 , pp. 542-560
    • Dickerson, J.A.1    Kosko, B.2
  • 14
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kenrls
    • A.J. Smola, B. Scholkopf and K.R. Muller, The connection between regularization operators and support vector kenrls, Neural Networks 11(4) (1998), 637-649.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Muller, K.R.3
  • 15
    • 0346076782 scopus 로고    scopus 로고
    • Support vector learning for fuzzy rule-based classification systems
    • December
    • Y. Chen and J.Z.Wang, Support vector learning for fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems 11(6) (December 2003), 716-728.
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , Issue.6 , pp. 716-728
    • Chen, Y.1    Wang, J.Z.2
  • 17
    • 2542639357 scopus 로고    scopus 로고
    • An Efficient method for computing leave-one-out error in support vector machines with gaussian kernels
    • May
    • M.M.S. Lee, S.S. Keerthi, C.J. Ong and D. DeCoste, An Efficient method for computing leave-one-out error in support vector machines with gaussian kernels, IEEE Transactions on Neural Networks 15(3) (May 2004), 750-757.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.3 , pp. 750-757
    • Lee, M.M.S.1    Keerthi, S.S.2    Ong, C.J.3    Decoste, D.4
  • 18
    • 1242263791 scopus 로고    scopus 로고
    • Aneuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
    • January
    • D. Chakraborty and N.R. Pal, Aneuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, IEEE Transactions on Neural Networks 15(1) (January 2004), 110-123.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 19
    • 3042555856 scopus 로고    scopus 로고
    • Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms
    • June
    • M.J. del Jesus, F. Holfmann, L. Jun Navascues and L. Sanchez, Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms, IEEE Trans. on Fuzzy Systems 12(3) (June 2004), 296-308.
    • (2004) IEEE Trans on Fuzzy Systems , vol.12 , Issue.3 , pp. 296-308
    • Del Jesus, M.J.1    Holfmann, F.2    Navascues, L.J.3    Sanchez, L.4
  • 20
    • 22044442216 scopus 로고    scopus 로고
    • A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments
    • G.C. Mouzouris and J.M. Mendel, A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments, J. Intell. Fuzzy Syst. 55 (1997), 367-374.
    • (1997) J. Intell. Fuzzy Syst , vol.55 , pp. 367-374
    • Mouzouris, G.C.1    Mendel, J.M.2
  • 22
    • 0037014776 scopus 로고    scopus 로고
    • Gene expression profiling of hereditary and sporadic ovarian cancers reveals unique BRCA1 and BRCA2 signatures
    • July 3
    • I.A. Hedenfalk, Gene expression profiling of hereditary and sporadic ovarian cancers reveals unique BRCA1 and BRCA2 signatures, Journal of the National Cancer Institute 94(13) (July 3), 2002.
    • (2002) Journal of the National Cancer Institute , vol.94 , pp. 13
    • Hedenfalk, I.A.1
  • 25
    • 20344387628 scopus 로고    scopus 로고
    • Symbolic adaptive neuro-fuzzy inference for data mining of heterogenous data, Intelligent Data Analysis (IDA)
    • S. Papadimitriou and K. Terzidis, Symbolic adaptive neuro-fuzzy inference for data mining of heterogenous data, Intelligent Data Analysis (IDA) Journal 7(4) (2003), 327-346.
    • (2003) Journal , vol.7 , Issue.4 , pp. 327-346
    • Papadimitriou, S.1    Terzidis, K.2
  • 26
    • 20344385445 scopus 로고    scopus 로고
    • Growing kernel-based self-organized maps trained with supervised bias, Intelligent Data Analysis (IDA)
    • S. Papadimitriou and K. Terzidis, Growing kernel-based self-organized maps trained with supervised bias, Intelligent Data Analysis (IDA) journal, 8(2) (2004), 111-130.
    • (2004) Journal , vol.8 , Issue.2 , pp. 111-130
    • Papadimitriou, S.1    Terzidis, K.2
  • 27
    • 4444353693 scopus 로고    scopus 로고
    • Kernel-based self-organized maps trained with supervised bias for gene expression data analysis
    • Imperial College Press
    • S. Papadimitriou and S.D. Likothanassis, Kernel-based self-organized maps trained with supervised bias for gene expression data analysis, Journal of Bioinformatics and Computational Biology (JBCB), Imperial College Press 1(4) (2004), 647-680.
    • (2004) Journal of Bioinformatics and Computational Biology (JBCB) , vol.1 , Issue.4 , pp. 647-680
    • Papadimitriou, S.1    Likothanassis, S.D.2
  • 29
    • 1542644781 scopus 로고    scopus 로고
    • Nonlinear evaluation of the unpredictability of the electrotelluric field variations signal before major earthquakes
    • October
    • A. Ifantis and S. Papadimitriou, Nonlinear evaluation of the unpredictability of the Electrotelluric Field Variations Signal before major earthquakes, Int. Journal of Neural Systems, World Scientific Press 13(5) (October 2003), 315-332.
    • (2003) Int. Journal of Neural Systems, World Scientific Press 13( , vol.5 , pp. 315-332
    • Ifantis, A.1    Papadimitriou, S.2
  • 30
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Feb
    • T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man. Cybern. SMC-15, (Feb. 1985), 116-132.
    • (1985) IEEE Trans. Syst. Man. Cybern. SMC-15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 31
    • 3042547260 scopus 로고    scopus 로고
    • Generating an interpretable family of fuzzy partitions from data
    • June
    • S. Guillaume and B. Charnomordic, Generating an interpretable family of fuzzy partitions from data, IEEE Trans. Fuzzy Systems 12(3) (June 2004), 324-335.
    • (2004) IEEE Trans. Fuzzy Systems , vol.12 , Issue.3 , pp. 324-335
    • Guillaume, S.1    Charnomordic, B.2
  • 32
    • 0344395607 scopus 로고    scopus 로고
    • POPFNN-CRI(S): Pseudo Outer Product-based Fuzzy Neural Network Using the Compositional Rule of Inference and Singleton Fuzzifier, Part B
    • K.K. Ang, C. Quek and M. Pasquier, POPFNN-CRI(S): Pseudo outer product-based fuzzy neural network using the compositional rule of inference and singleton fuzzifier, Part B, IEEE Transactions on Systems, Man and Cybernetics 33(6) (2003), 838-849.
    • (2003) IEEE Transactions on Systems, Man and Cybernetics , vol.33 , Issue.6 , pp. 838-849
    • Ang, K.K.1    Quek, C.2    Pasquier, M.3
  • 33
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Feb
    • J.S.R. Jang and C.T. Sun, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Trans. Neural Networks 4 (Feb. 1993), 156-159.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 156-159
    • Jang, J.S.R.1    Sun, C.T.2
  • 35
    • 14544280631 scopus 로고    scopus 로고
    • RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm
    • K.K. Ang and C. Quek, RSPOP: Rough Set-Based Pseudo Outer-Product Fuzzy Rule Identification Algorithm, Neural Computation 17(1) (2005), 205-243.
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 205-243
    • Ang, K.K.1    Quek, C.2
  • 36
    • 0038173250 scopus 로고    scopus 로고
    • Extracting interpretable rules from rbf networks
    • Y. Jin and B. Sendhoff, Extracting Interpretable Rules from RBF Networks, Neural Processing Letters 17(2) (2003), 149-164.
    • (2003) Neural Processing Letters , vol.17 , Issue.2 , pp. 149-164
    • Jin, Y.1    Sendhoff, B.2
  • 37
    • 0035196019 scopus 로고    scopus 로고
    • The POP learning algorithms: Reducing work in identifying fuzzy rules
    • C. Quek and R.W. Zhou, The POP learning algorithms: reducing work in identifying fuzzy rules, Neural Networks 14 (2001), 1431-1445
    • (2001) Neural Networks , vol.14 , pp. 1431-1445
    • Quek, C.1    Zhou, R.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.