-
1
-
-
0004245694
-
-
New York: Dover Publications Inc, Reprint of the 1972 edition
-
Abramowitz, M., Stegun, I.A.: ed.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications Inc., 1992, Reprint of the 1972 edition
-
(1992)
Handbook of mathematical functions with formulas, graphs, and mathematical tables
-
-
Abramowitz, M.1
Stegun, I.A.2
ed3
-
2
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549-561 (1982)
-
(1982)
Commun. Math. Phys
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.-L.2
-
3
-
-
33847732573
-
Mean field dynamics of Boson Stars
-
Elgart, A., Schlein, B.: Mean field dynamics of Boson Stars. Comm. Pure Appl. Math. 60(4), 500-545 (2006)
-
(2006)
Comm. Pure Appl. Math
, vol.60
, Issue.4
, pp. 500-545
-
-
Elgart, A.1
Schlein, B.2
-
4
-
-
34249294052
-
Effective dynamics for Boson stars
-
Fröhlich, J., Jonsson, B.L.G., Lenzmann, E.: Effective dynamics for Boson stars. Nonlinearity 32, 1031-1075 (2007)
-
(2007)
Nonlinearity
, vol.32
, pp. 1031-1075
-
-
Fröhlich, J.1
Jonsson, B.L.G.2
Lenzmann, E.3
-
5
-
-
34547549403
-
-
Fröhlich, J., Lenzmann, E.: Blow-up for nonlinear wave equations describing Boson Stars. http://arxiv.org/list/math-ph/0511003, 2006 to appear in Comm. Pure Appl. Math.
-
Fröhlich, J., Lenzmann, E.: Blow-up for nonlinear wave equations describing Boson Stars. http://arxiv.org/list/math-ph/0511003, 2006 to appear in Comm. Pure Appl. Math.
-
-
-
-
6
-
-
34547363548
-
-
Hislop, P.D.: Exponential decay of two-body eigenfunctions: A review. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), 4 of Electron. J. Differ. Equ. Conf., pages 265-288 (electronic), San Marcos, TX, 2000. Southwest Texas State Univ.
-
Hislop, P.D.: Exponential decay of two-body eigenfunctions: A review. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), Volume 4 of Electron. J. Differ. Equ. Conf., pages 265-288 (electronic), San Marcos, TX, 2000. Southwest Texas State Univ.
-
-
-
-
7
-
-
34547354059
-
-
Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. http://arXiv.org/list/math.AP/0505456, 2005, to appear in Mathematical Physics, Analysis, and Geometry
-
Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. http://arXiv.org/list/math.AP/0505456, 2005, to appear in Mathematical Physics, Analysis, and Geometry
-
-
-
-
8
-
-
84916181784
-
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation
-
Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57, 93-105 (1977)
-
(1977)
Stud. Appl. Math
, vol.57
, pp. 93-105
-
-
Lieb, E.H.1
-
9
-
-
0003936307
-
-
A Providence. RI: Amer. Math. Soc, second edition
-
Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics. A Providence. RI: Amer. Math. Soc., second edition, 2001
-
(2001)
Analysis, Volume 14 of Graduate Studies in Mathematics
-
-
Lieb, E.H.1
Loss, M.2
-
10
-
-
33748291251
-
Gravitational collapse in quantum mechanics with relativistic kinetic energy
-
Lieb, E.H., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Physics 155(2), 494-512 (1984)
-
(1984)
Ann. Physics
, vol.155
, Issue.2
, pp. 494-512
-
-
Lieb, E.H.1
Thirring, W.2
-
11
-
-
0000539356
-
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics
-
Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147-174 (1987)
-
(1987)
Commun. Math. Phys
, vol.112
, pp. 147-174
-
-
Lieb, E.H.1
Yau, H.-T.2
-
12
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1
-
Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1. Ann. Inst. Henri Poincaré, 1(2), 109-145 (1984)
-
(1984)
Ann. Inst. Henri Poincaré
, vol.1
, Issue.2
, pp. 109-145
-
-
Lions, P.-L.1
-
13
-
-
0004136765
-
-
Princeton, NJ: Princeton University Press
-
Stein, E.M.: Harmonic Analysis. Princeton, NJ: Princeton University Press, 1993
-
(1993)
Harmonic Analysis
-
-
Stein, E.M.1
|