-
1
-
-
0001596880
-
Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire.
-
T. AUBIN, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55:3 (1976), 269-296.
-
(1976)
J. Math. Pures Appl. (9)
, vol.55
, Issue.3
, pp. 269-296
-
-
AUBIN, T.1
-
3
-
-
0040248890
-
Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case
-
J. BOURGAIN, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12:1 (1999), 145-171.
-
(1999)
J. Amer. Math. Soc
, vol.12
, Issue.1
, pp. 145-171
-
-
BOURGAIN, J.1
-
5
-
-
49749141944
-
3
-
3, Ann. of Math. (2) 167:3 (2008), 767-865.
-
(2008)
Ann. of Math. (2)
, vol.167
, Issue.3
, pp. 767-865
-
-
COLLIANDER, J.1
KEEL, M.2
STAFFILANI, G.3
TAKAOKA, H.4
TAO, T.5
-
6
-
-
85050669204
-
The global Cauchy problem for the nonlinear Schrödinger equation revisited
-
J. GINIBRE, G. VELO, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2:4 (1985), 309-327.
-
(1985)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.2
, Issue.4
, pp. 309-327
-
-
GINIBRE, J.1
VELO, G.2
-
7
-
-
84990563336
-
Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system
-
M. GRILLAKIS, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math. 43:3 (1990), 299-333.
-
(1990)
Comm. Pure Appl. Math
, vol.43
, Issue.3
, pp. 299-333
-
-
GRILLAKIS, M.1
-
8
-
-
0001138601
-
Endpoint Strichartz estimates
-
M. KEEL, T. TAO, Endpoint Strichartz estimates, Amer. J. Math. 120:5 (1998), 955-980.
-
(1998)
Amer. J. Math
, vol.120
, Issue.5
, pp. 955-980
-
-
KEEL, M.1
TAO, T.2
-
9
-
-
33750526878
-
-
Math
-
C.E. KENIG, F. MERLE, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166:3 (2006), 645-675.
-
(2006)
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent
, vol.166
, Issue.645-675
, pp. 3
-
-
KENIG, C.E.1
MERLE, F.2
-
10
-
-
0035922239
-
On the defect of compactness for the Strichartz estimates of the Schrödinger equations
-
S. KERAANI, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175:2 (2001), 353-392.
-
(2001)
J. Differential Equations
, vol.175
, Issue.2
, pp. 353-392
-
-
KERAANI, S.1
-
11
-
-
34250849129
-
On the focusing critical semi-linear wave equation
-
J. KRIEGER, W. SCHLAG, On the focusing critical semi-linear wave equation, Amer. J. Math. 129:3 (2007), 843-913.
-
(2007)
Amer. J. Math
, vol.129
, Issue.3
, pp. 843-913
-
-
KRIEGER, J.1
SCHLAG, W.2
-
12
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations. The limit case. II
-
P.-L. LIONS, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1:2 (1985), 45-121.
-
(1985)
Rev. Mat. Iberoamericana
, vol.1
, Issue.2
, pp. 45-121
-
-
LIONS, P.-L.1
-
13
-
-
84974001368
-
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
-
F. MERLE, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69:2 (1993), 427-454.
-
(1993)
Duke Math. J
, vol.69
, Issue.2
, pp. 427-454
-
-
MERLE, F.1
-
14
-
-
0002944738
-
The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent
-
O. REY, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89:1 (1990), 1-52.
-
(1990)
J. Funct. Anal
, vol.89
, Issue.1
, pp. 1-52
-
-
REY, O.1
-
15
-
-
33750419023
-
Spectral theory and nonlinear partial differential equations: A survey
-
W. SCHLAG, Spectral theory and nonlinear partial differential equations: a survey, Discrete Contin. Dyn. Syst. 15:3 (2006), 703-723.
-
(2006)
Discrete Contin. Dyn. Syst
, vol.15
, Issue.3
, pp. 703-723
-
-
SCHLAG, W.1
-
16
-
-
0000540347
-
Existence of solitary waves in higher dimensions
-
W. A. STRAUSS, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55:2 (1977), 149-162.
-
(1977)
Comm. Math. Phys
, vol.55
, Issue.2
, pp. 149-162
-
-
STRAUSS, W.A.1
-
17
-
-
84972553620
-
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
-
R.S. STRICHARTZ, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44:3 (1977), 705-714.
-
(1977)
Duke Math. J
, vol.44
, Issue.3
, pp. 705-714
-
-
STRICHARTZ, R.S.1
-
18
-
-
34250392866
-
Best constant in Sobolev inequality
-
G. TALENTI, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353-372.
-
(1976)
Ann. Mat. Pura Appl. (4)
, vol.110
, pp. 353-372
-
-
TALENTI, G.1
-
19
-
-
27644461939
-
Stability of energy-critical nonlinear Schrödinger equations in high dimensions
-
28pp
-
T. TAO, M. VISAN, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations 118 (2005), 28pp.
-
(2005)
Electron. J. Differential Equations
, vol.118
-
-
TAO, T.1
VISAN, M.2
-
20
-
-
0003276928
-
Linear Operators in Hilbert Spaces
-
translated from the German by Joseph Szücs, Springer-Verlag, New York
-
J. WEIDMANN, Linear Operators in Hilbert Spaces, (translated from the German by Joseph Szücs), Graduate Texts in Mathematics 68, Springer-Verlag, New York, 1980.
-
(1980)
Graduate Texts in Mathematics
, vol.68
-
-
WEIDMANN, J.1
|