메뉴 건너뛰기




Volumn 43, Issue 6, 2013, Pages 729-737

An ensemble of SVM classifiers based on gene pairs

Author keywords

Ensemble learning; Genetic algorithm (GA); Microarray data; Support vector machine (SVM); Top scoring pair (TSP)

Indexed keywords

ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; ENSEMBLE SYSTEMS; INFORMATIVE GENES; INTERPRETABILITY; MICROARRAY DATA; MICROARRAY EXPRESSIONS; OPTIMIZED COMBINATIONS;

EID: 84877695360     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2013.03.010     Document Type: Article
Times cited : (48)

References (55)
  • 2
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling. the two cultures
    • Breiman L. Statistical modeling. the two cultures. Stat. Sci. 2001, 16(3):199-231.
    • (2001) Stat. Sci. , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 3
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. Ann. Stat. 1996, 24(6):2350-2383.
    • (1996) Ann. Stat. , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 4
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 5
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua J., Tembe W., Dougherty E. Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognition 2009, 42(3):409-424.
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.2    Dougherty, E.3
  • 6
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • arXiv:
    • Alter O., Brown P.O., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. 2000, 97(18):10101-10106. arXiv:http://www.pnas.org/content/97/18/10101.full.pdf+html.
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 7
    • 34248203587 scopus 로고    scopus 로고
    • Component retention in principal component analysis with application to cdna microarray data
    • Cangelosi R., Goriely A. Component retention in principal component analysis with application to cdna microarray data. Biol. Direct 2007, 2:1-21. 10.1186/1745-6150-2-2.
    • (2007) Biol. Direct , vol.2 , pp. 1-21
    • Cangelosi, R.1    Goriely, A.2
  • 8
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics 2002, 18(1):51.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 51
    • Liebermeister, W.1
  • 9
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee S., Batzoglou S., et al. Application of independent component analysis to microarrays. Genome Biol. 2003, 4(11):76.
    • (2003) Genome Biol. , vol.4 , Issue.11 , pp. 76
    • Lee, S.1    Batzoglou, S.2
  • 10
    • 12844264782 scopus 로고    scopus 로고
    • Blind source separation and the analysis of microarray data
    • Chiappetta P., Roubaud M., Torrésani B. Blind source separation and the analysis of microarray data. J. Comput. Biol. 2004, 11(6):1090-1109.
    • (2004) J. Comput. Biol. , vol.11 , Issue.6 , pp. 1090-1109
    • Chiappetta, P.1    Roubaud, M.2    Torrésani, B.3
  • 11
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
    • Huang D., Zheng C. Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 2006, 22(15):1855.
    • (2006) Bioinformatics , vol.22 , Issue.15 , pp. 1855
    • Huang, D.1    Zheng, C.2
  • 12
    • 62349101529 scopus 로고    scopus 로고
    • Ensemble component selection for improving ica based microarray data prediction models
    • Liu K., Li B., Zhang J., Du J. Ensemble component selection for improving ica based microarray data prediction models. Pattern Recognition 2009, 42(7):1274-1283.
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1274-1283
    • Liu, K.1    Li, B.2    Zhang, J.3    Du, J.4
  • 13
    • 70349780385 scopus 로고    scopus 로고
    • Microarray data classification based on ensemble independent component selection
    • Liu K., Li B., Wu Q.-Q., Zhang J., Du J.-X., Liu G.-Y. Microarray data classification based on ensemble independent component selection. Comput. Biol. Med. 2009, 39(11):953-960.
    • (2009) Comput. Biol. Med. , vol.39 , Issue.11 , pp. 953-960
    • Liu, K.1    Li, B.2    Wu, Q.-Q.3    Zhang, J.4    Du, J.-X.5    Liu, G.-Y.6
  • 15
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee J., Lee J., Park M., Song S. An extensive comparison of recent classification tools applied to microarray data. Comput. Stat. Data Anal. 2005, 48(4):869-885.
    • (2005) Comput. Stat. Data Anal. , vol.48 , Issue.4 , pp. 869-885
    • Lee, J.1    Lee, J.2    Park, M.3    Song, S.4
  • 18
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Springer, Berlin, Heidelberg, P. Vitányi (Ed.)
    • Freund Y., Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory 1995, 23-37. Springer, Berlin, Heidelberg. P. Vitányi (Ed.).
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 19
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51(2):181-207.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 20
    • 37249077843 scopus 로고    scopus 로고
    • Classifier ensembles with a random linear oracle
    • Kuncheva L.I., Rodriguez J.J. Classifier ensembles with a random linear oracle. IEEE Trans. Knowl. Data Eng. 2007, 19(4):500-508.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.4 , pp. 500-508
    • Kuncheva, L.I.1    Rodriguez, J.J.2
  • 23
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan A., Naiman D., Xu L., Winslow R., Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005, 21(October):3896-3904.
    • (2005) Bioinformatics , vol.21 , Issue.OCTOBER , pp. 3896-3904
    • Tan, A.1    Naiman, D.2    Xu, L.3    Winslow, R.4    Geman, D.5
  • 25
    • 48349104054 scopus 로고    scopus 로고
    • Novel extension of k-tsp algorithm for microarray classification
    • Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • M. Czajkowski, M. Krtowski, Novel extension of k-tsp algorithm for microarray classification, in: New Frontiers in Applied Artificial Intelligence, Lecture Notes in Computer Science, vol. 5027, Springer, Berlin, Heidelberg, 2008, pp. 456-465.
    • (2008) New Frontiers in Applied Artificial Intelligence , vol.5027 , pp. 456-465
    • Czajkowski, M.1    Krtowski, M.2
  • 26
    • 34548408105 scopus 로고    scopus 로고
    • A new classification model with simple decision rule for discovering optimal feature gene pairs
    • Li J., Tang X. A new classification model with simple decision rule for discovering optimal feature gene pairs. Comput. Biol. Med. 2007, 37(11):1637-1646.
    • (2007) Comput. Biol. Med. , vol.37 , Issue.11 , pp. 1637-1646
    • Li, J.1    Tang, X.2
  • 27
    • 70349279936 scopus 로고    scopus 로고
    • K-top scoring pair algorithm for feature selection in SVM with applications to microarray data classification
    • Yoon S., Kim S. k-top scoring pair algorithm for feature selection in SVM with applications to microarray data classification. Soft Comput. Fusion Found. Methodol. Appl. 2010, 14(2):151-159.
    • (2010) Soft Comput. Fusion Found. Methodol. Appl. , vol.14 , Issue.2 , pp. 151-159
    • Yoon, S.1    Kim, S.2
  • 28
    • 80053173508 scopus 로고    scopus 로고
    • Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
    • Shi P., Ray S., Zhu Q., Kon M. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinf. 2011, 12(1):375.
    • (2011) BMC Bioinf. , vol.12 , Issue.1 , pp. 375
    • Shi, P.1    Ray, S.2    Zhu, Q.3    Kon, M.4
  • 29
    • 78650982063 scopus 로고    scopus 로고
    • Improving cancer classification accuracy using gene pairs
    • Chopra P., Lee J., Kang J., Lee S. Improving cancer classification accuracy using gene pairs. PLoS ONE 2010, 5(12):e14305.
    • (2010) PLoS ONE , vol.5 , Issue.12
    • Chopra, P.1    Lee, J.2    Kang, J.3    Lee, S.4
  • 31
    • 0035881732 scopus 로고    scopus 로고
    • Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer
    • Welsh J., Sapinoso L., Su A., Kern S., Wang-Rodriguez J., Moskaluk C., Frierson H., Hampton G. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001, 61(16):5974-5978.
    • (2001) Cancer Res. , vol.61 , Issue.16 , pp. 5974-5978
    • Welsh, J.1    Sapinoso, L.2    Su, A.3    Kern, S.4    Wang-Rodriguez, J.5    Moskaluk, C.6    Frierson, H.7    Hampton, G.8
  • 32
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297. 10.1007/BF00994018.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 34
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • Ko A.H., Sabourin R., Alceu Souza Britto J. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition 2008, 41(5):1718-1731.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1718-1731
    • Ko, A.H.1    Sabourin, R.2    Alceu Souza Britto, J.3
  • 35
    • 77955910535 scopus 로고    scopus 로고
    • Pyevolve. a python open-source framework for genetic algorithms
    • Perone C.S. Pyevolve. a python open-source framework for genetic algorithms. SIGEVOlution 2009, 4:12-20.
    • (2009) SIGEVOlution , vol.4 , pp. 12-20
    • Perone, C.S.1
  • 36
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T., Zhang C., Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004, 20(15):2429-2437.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 39
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D., Gish K., Ybarra S., Mack D., Levine A. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 1999, 96(12):6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 45
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1/3):389-422.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.