메뉴 건너뛰기




Volumn 24, Issue 1, 2011, Pages 121-129

Missing value imputation on missing completely at random data using multilayer perceptrons

Author keywords

Hot deck model; Imputation; Mean mode model; Missing data; Multilayer perceptron; Regression model

Indexed keywords

HOT-DECK MODEL; IMPUTATION; MEAN/MODE MODEL; MISSING DATA; MULTILAYER PERCEPTRON; REGRESSION MODEL;

EID: 78649645941     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2010.09.008     Document Type: Article
Times cited : (146)

References (26)
  • 1
    • 78649666590 scopus 로고    scopus 로고
    • UCI machine learning repository. URL
    • Asuncion, A., & Newman, D. (2007). UCI machine learning repository. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 3
    • 78649662382 scopus 로고    scopus 로고
    • Bagging, subagging and bragging for improving some prediction algorithms. Tech. rep. 113, Seminar Für Statistik, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
    • Bühlmann, P. (2003). Bagging, subagging and bragging for improving some prediction algorithms. Tech. rep. 113, Seminar Für Statistik, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
    • (2003)
    • Bühlmann, P.1
  • 4
    • 78649640634 scopus 로고    scopus 로고
    • Neural Network TOOLBOX for Use with Matlab. User's Guide. Edition. The Math Works Inc.
    • Demuth, H., & Beale, M. (1997). Neural Network TOOLBOX for Use with Matlab. User's Guide. Edition. The Math Works Inc. http://www.mathworks.com.
    • (1997)
    • Demuth, H.1    Beale, M.2
  • 5
    • 78649656310 scopus 로고    scopus 로고
    • Euredit, Interim report on evaluation criteria for statistical editing and imputation.
    • Euredit, (2005). Interim report on evaluation criteria for statistical editing and imputation. http://www.cs.york.ac.uk/euredit.
    • (2005)
  • 6
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its properties
    • Gower J. A general coefficient of similarity and some of its properties. Biometrics 1971, 27(4):857-871.
    • (1971) Biometrics , vol.27 , Issue.4 , pp. 857-871
    • Gower, J.1
  • 9
    • 78649644953 scopus 로고    scopus 로고
    • Neural networks for editing and imputation. In Dataclean 2002 conference.
    • Koikkalainen, P. (2002). Neural networks for editing and imputation. In Dataclean 2002 conference.
    • (2002)
    • Koikkalainen, P.1
  • 10
    • 78649638239 scopus 로고    scopus 로고
    • How to find the best imputation technique? Tests with various methods. In International conference on survey nonresponse.
    • Laaksonen, S. (1999). How to find the best imputation technique? Tests with various methods. In International conference on survey nonresponse.
    • (1999)
    • Laaksonen, S.1
  • 11
    • 78649658101 scopus 로고    scopus 로고
    • Traditional and new techniques for imputation
    • Laaksonen S. Traditional and new techniques for imputation. Journal of Statistics in Transition 2002, 5(6):1013-1035.
    • (2002) Journal of Statistics in Transition , vol.5 , Issue.6 , pp. 1013-1035
    • Laaksonen, S.1
  • 12
    • 50949107928 scopus 로고    scopus 로고
    • Local distance-based classification
    • Laguía M., Castro J. Local distance-based classification. Knowledge-Based Systems 2008, 21(7):692-703.
    • (2008) Knowledge-Based Systems , vol.21 , Issue.7 , pp. 692-703
    • Laguía, M.1    Castro, J.2
  • 13
    • 67349167079 scopus 로고    scopus 로고
    • State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case
    • Liang J., Wang Z., Liu X. State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case. IEEE Transactions on Neural Networks 2009, 20(5):781-793.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.5 , pp. 781-793
    • Liang, J.1    Wang, Z.2    Liu, X.3
  • 15
    • 78649686275 scopus 로고    scopus 로고
    • Imputation using support vector machines. Tech. rep.
    • Mallinson, H., & Gammerman, A. (2005). Imputation using support vector machines. Tech. rep.
    • (2005)
    • Mallinson, H.1    Gammerman, A.2
  • 16
    • 37748999261 scopus 로고    scopus 로고
    • Missing data: a comparison of neural network and expectation maximization techniques
    • Nelwamondo F., Mohamed S., Marwala T. Missing data: a comparison of neural network and expectation maximization techniques. Current Science 2007, 93(11):1514-1521.
    • (2007) Current Science , vol.93 , Issue.11 , pp. 1514-1521
    • Nelwamondo, F.1    Mohamed, S.2    Marwala, T.3
  • 17
    • 0042006117 scopus 로고
    • Editing statistical records by neural networks
    • Nordbotten S. Editing statistical records by neural networks. Journal of Official Statistics 1995, 11(4):391-411.
    • (1995) Journal of Official Statistics , vol.11 , Issue.4 , pp. 391-411
    • Nordbotten, S.1
  • 18
    • 0043007739 scopus 로고    scopus 로고
    • Neural network imputation applied to the norwegian 1990 population census data
    • Nordbotten S. Neural network imputation applied to the norwegian 1990 population census data. Journal of Official Statistics 1996, 12(4):385-401.
    • (1996) Journal of Official Statistics , vol.12 , Issue.4 , pp. 385-401
    • Nordbotten, S.1
  • 19
    • 78649653073 scopus 로고    scopus 로고
    • New methods of editing and imputation. In Institute, W. D. I. S. (Ed.), Agriculture statistics 2000. The Haag, Netherlands.
    • Nordbotten, S. (1998). New methods of editing and imputation. In Institute, W. D. I. S. (Ed.), Agriculture statistics 2000. The Haag, Netherlands.
    • (1998)
    • Nordbotten, S.1
  • 20
    • 78649654645 scopus 로고    scopus 로고
    • Data editing with artificial neural networks. In Working paper No10, UN/ECE work session on statistical data editing. Conference of european statisticians.
    • Norway, S. (1997). Data editing with artificial neural networks. In Working paper No10, UN/ECE work session on statistical data editing. Conference of european statisticians.
    • (1997)
    • Norway, S.1
  • 22
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D. Inference and missing data. Biometrika 1976, 63(3):581-592.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.1
  • 23
    • 78649678161 scopus 로고    scopus 로고
    • Editing and imputation in Eurostat. In Working paper No21, UN/ECE work session on statistical data editing. Conference of european statisticians.
    • Sonnberger, H., & Maine, N. (2000). Editing and imputation in Eurostat. In Working paper No21, UN/ECE work session on statistical data editing. Conference of european statisticians.
    • (2000)
    • Sonnberger, H.1    Maine, N.2
  • 24
    • 78649675405 scopus 로고    scopus 로고
    • Computational intelligence and decision trees for missing data estimation In International joint conference on neural networks. Los Alamitos, California, USA.
    • Ssali, G., & Marwala, T. (2008). Computational intelligence and decision trees for missing data estimation In International joint conference on neural networks. Los Alamitos, California, USA.
    • (2008)
    • Ssali, G.1    Marwala, T.2
  • 25
    • 60549099552 scopus 로고    scopus 로고
    • Robust h [infinity] control for a class of nonlinear discrete time-delay stochastic systems with missing measurements
    • Wang Z., Ho D., Liu Y., Liu X. Robust h [infinity] control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 2009, 45(3):684-691.
    • (2009) Automatica , vol.45 , Issue.3 , pp. 684-691
    • Wang, Z.1    Ho, D.2    Liu, Y.3    Liu, X.4
  • 26
    • 0033350105 scopus 로고    scopus 로고
    • Training algorithm with incomplete data for feed-forward neural networks
    • Yoon S., Lee S. Training algorithm with incomplete data for feed-forward neural networks. Neural Processing Letters 1999, 10(3):171-179.
    • (1999) Neural Processing Letters , vol.10 , Issue.3 , pp. 171-179
    • Yoon, S.1    Lee, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.